The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 243 – 250

 

 

DISSOLVED ORGANIC MATTER AND ITS IMPACT ON THE

CHLORINE DEMAND OF TREATED WATER

 

Lim Fang Yee1, Md. Pauzi Abdullah1, Sadia Ata1  and Basar Ishak2

 

1School of Chemical Sciences and Food Technology, University Kebangsaan Malaysia,

 43600 Bangi, Selangor Darul Ehsan.

2Semenyih River Water Treatment Plant, P.O. Box 27, 43807, Dengkil.

 

Abstract

Dissolved  organic matter (DOM) in natural waters is a complex mixture of compounds and contains  most of the reduced carbon in aquatic ecosystems. DOM is ubiquitous in surface water and cannot be easily treated or disinfected using the conventional treatment.   DOM in the water samples from  Semenyih River Water Treatment Plant were isolated  and  fractionated  using  resin  adsorbents  into  six  classes.  These  classes  are  operationally  categorized  as hydrophilic acid, hydrophilic neutral, hydrophilic base, hydrophobic acid, hydrophobic neutral and hydrophobic base. The increase of DOM presents a challenge for drinking water management because DOM could lead to the formation of carcinogenic disinfection by products (DBP). The concentration of DOM and the effectiveness of unit process along the treatment plant were studied. The evolution of chlorine demand and the  trihalomethanes formation potential in the sample of all the DOM fractions was also monitored. Experiments showed that the water samples with higher DOM concentration are found to have a higher chlorine demand and the formation of trihalomethanes. It can be concluded that DOM can be characterized as a function of chlorine demand. Hydrophilic neutral and hydrophobic acid fractions were found to play an important role in causing a high chlorine demand. The identification and the specific elimination of DOM in the water responsible for the chlorine demand would resolve most of the problems related to the formation of the DBP.

 

Keywords: Dissolved organic matter, chlorine demand, Semenyih River water treatment plant, 

trihalomethanes formation potential

 

References

1.         Thurman, E.M. 1985. Organic geochemistry of natural waters. Martinus Nijhoff/ Dr W. Junk  Publishers, Dodrecht, The Netherlands.

2.         Singer, P.C. 1999. Formation and control of disinfection by-products in drinking water.  American Water Works Assoc. Denver, CO.

3.         White, G.C. 1992. Handbook of chlorination and alternative disinfections. 3rd   Ed. New York: Van Nostrand Reinhold Publisher, Inc.

4.         Miles, A.M., Singer. P.C., Ashley, D.L., Lynberg, M.C., Mendola, P., Langlois, P.H. & Nuckols, J.R. 2002. Comparison of trihalomethanes in tap water and blood. Environ. Sci. Tech. 36: 1692-1698.

5.         Black, B.D., Harrington, G.W. & Singer, P.C. 1996. Reducing cancer risks by improving  organic carbon removal. J. Am. Water Works Assoc. 88: 40-52.

6.         Singer, P.C. & Chang, S.D. 1989. Correlations between trihalomethanes and total organic  halides formed during water treatment. J. Am. Water Works Assoc. 81: 61-65.

7.         G.A. Edwards & A. Amirtharajah. 1985. Removing color caused by humic acids. J. AWWA. 77: 50-57.

8.         T.A. Bellar, J.J. Lichtenberg & R.C. Kroner. 1974. Occurrence of organohalides in  chlorinated drinking waters. J. AWWA. 66: 703-706

9.         J.J. Rook. 1974. Formation of haloforms during chlorination of natural water. Water Treatment Examination 23: 234-243.

10.      S. Batterman, L.Z. Zhang & S.Q. Wang. Quenching of chlorination disinfection by-product  formation in drinking water by hydrogen peroxide. Water Res. 34: 1652-1658.

11.      J.S.  Miller  &  P.C.  Ugden.  Characterization  of  non-volatile  aqueous  chlorination  by-products  of  humic substances. Environ. Sci. Technol. 17: 150-156.

12.      Siddiqui, M.S., Amy, G.L. & Murrht, B.D. 1997. Ozone enhanced removal of natural organic matter from drinking water source. Water Res. 31: 3098-3106.

13.      Khan, E., Babcock, R.W., Suffet, I.H. & Stenstorm, M.K. 1998. Biodegradable dissolved organic carbon for indication wastewater reclamation plant performance and treated wastewater quality. Water Environ. Res. 70: 1033-1040.

14.      Zsolnay, A. 2003. Dissolved organic matter: artefacts, definitions and functions. Geoderma 113: 187-209.

15.      Buffle, J. & Leppard, G.G. 1995. Characterization of aquatic colloids and macromolecules. 1. Structure and behaviour of colloidal material. Environ. Sci. Technol. 29: 2169-2175.

16.      Gustafsson, O. & Gschwend, P.M. 1997. Aquatic colloids: Concepts, definitions and current  challenges. Limnol. Oceanor. 42: 519-528.

17.      Thurman, E.M. & Malcolm, K.L. 1981. Preparative isolation of aquatic humic substances.  Environ. Sci. Technol. 16: 463-466.

18.      C.W.K. Chow, J.A. van Leeuwen, M. Drikas, R. Fabriks, K.M. Spark & D.W. Page. 1999. The impact of the character of natural organic matter in conventional treatment with alum. Water Sci. Technol. 40: 97-104.

19.      Vance, G.F. & David, M.B. 1991. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, Central Maine, USA. Geochim. Cosmochim. Acta 55: 3611-3625.

20.      Kainulainen, T., Tuhkanen, T., Varitianien, T., Heinonen, H. & Kalliokoski, P. 1994. The effect of different oxidation and filtration processes on the molecular size distribution of humic  material. Wat. Sci. Technol. 30(9): 169-174.

21.      Shaw, P.J., De Haan, H., & Jones, R.I. 1994. Applicability and reliability of gel filtration to study aquatic humic substances revisited: the effects of pH on molecular size distributions. Envinron. Technol. 15: 753-764.

22.      Bruchet, A., Rousseau, C. & Mallevialle, J. 1990. Pyrolysis-GC-MS for investigating high-molecular-weight THM precursors and other refractory organics. J. AWWA. 82(9): 66-74.

23.      Leenheer, J.A. Croue, J.P., Benjamin, M., Korshin, G.V., Hwang, C.J., Bruchet, A., & Aiken G.R. 2000. In Barrett,  S.E.,  Krasner,  S.W.  &  Amy,  G.L.  (Eds.),  Natural  organic  matter  and  disinfection  by-products characterization and control in drinking water. American Chemical Society, Washington, DC. Pg 68-83.

24.      Leenheer, J.A. 1981. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural water and wastewaters. Environ. Sci. Tech. 15: 578-587.

25.      Standard methods for the examination of water and waste water. 1998. 20th ed. American  Public Health Association. AWWA & water pollution control federation.

26.      T.F. Marhaba, Y. Pu & K. Bengraine. 2003. Modified dissolved organic matter fraction technique for natural water. J. Hazard. Mater. B 101: 43-53.

27.      G.M. Day, R. Beckett, B.T. Hart & I.D. Mchelvie. 1991. Characterization of natural organic matter from four Victorian freshwater systems. Australian J. Marine Freshwater Res. 42(6):675-687.




Previous                    Content                    Next