The Malaysian Journal of Analytical Sciences Vol 11 No 1 (2007): 219 – 228

 

 

KINETICS AND THERMODYNAMIC FOR SORPTION OF ARSENATE BY LANTHANUM-EXCHANGED ZEOLITE

 

Md Jelas Haron*, Saiful Adli Masdan, Mohd Zobir Hussein , Zulkarnain  Zainal and Anuar Kassim

 

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia

 

*Corresponding author: mdjelas@fsas.upm.edu.my

 

Abstract

Zeolites are crystalline, hydrated aluminosilicate containing exchangeable alkaline and alkaline earth cations in their structural frameworks.  Since  zeolites have permanent  negative charges on their  surfaces, they have no affinity for anions.  However recent studies have shown that modification of zeolites with certain surfactants or metal cations yield  sorbents  with a strong affinity  for many anions.   In  this  paper, modification  of zeolites (zeolite A, X and ZSM 5) were performed by exchange of naturally occurring cations with lanthanum ion that forms low solubilit y arsenate salt.   The exchanged zeolites  were  used to sorb arsenate from aqueous solution. Among parameters investigated were effect of pH, arsenate initial concentrations, contact time and temperature. The maximum exchanged capacity of La(III) ion was obtained when using solution with initial pH of 4.  Zeolite X gives the highest La(III) exchanged  capacity compared to other zeolites .   The results showed that As(V) sorption by La-zeolites occurred  at  about  pH  6.5 and increased  as pH increased and reaching  maximum  at equilibrium pH about 7.8.   On the other hand, almost no arsenate sorption occurred on unexchanged zeolites. This indicates  that  La(III)  ion on the exchanged  zeolites  is taking  part  on the As(V)  sorption  via surface precipitation.  The  results  also  showed  that  the sorption  capacities  increased  with increasing  initial  As(V) concentrations. The sorption followed Langmuir model with maximum sorption capacities of 0.41, 0.21  and 0.19  mmol/g  at  25°C for La exchanged  zeolite  X (La-ZX) , La exchanged  zeolite  ZSM 5 (La -ZSM) and  La exchanged  zeolite  A (La-ZA),  respectively. The  amo unts  of  sorption  of  As(V)  by  La  exchanged   zeolite increased as temperature increased from 25 to 70°C indicating that the process is endothermic.  The free energy changes (  ΔG ) for the sorption at 25 C were  -10.25, -9.65 and -8.49 kJ/mol for La -ZX, La -ZSM and La -ZA, respectively.  The negative values of ΔGo   meant that the sorption of As(V) ions on La -exchanged zeolite was spontaneous, perhaps because the La(III) had high affinity towards the arsenic  ion  as indicated by a low Ksp value of of lanthanum arsenate.  A slightly positive entropy change for sorption of As(V) ion on La–exchanged zeolite could be due to fixation of the ions on the La(III) exchange sites that was randomly distributed on the sorbents.  The kinetics study showed that the As(V) sorption followed first order kinetic model.  The first-order kinetic constants for the sorption are 2.77x10-3, 2.25x10-3   and 1.60x10-3    min-1   for La -ZX, La -ZSM and  La-ZA, respectively.

 

Keywords: La-exchanged zeolite, arsenate sorption, thermodynamic and kinetics

 

References

1.         Lindberg, J.,  Sterneland.J., Johansson, P.O., and Gustafsson, J.P., (1997).   Spodic material for in situ  treatment of arsenic in ground water. Ground Water Monitoring and Remediation 17, 125-130.

2.         Carrillo, A., and Drever, J.L. (1998). Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfo mining area, Baja California, Mexico. Environmental Geology 35, 251-257.

3.         Galer, J.M., Delmas, R. and Loos-Neskovic, C., (1997).   Progress in Ion Exchange: Advances and  Applications. In Progress in Ion Exchange: Advances and Applications, Dyer A., Hudson, M.J. and Williams, P.A. (eds.),  The Royal Society of Chemistry , p. 187.

4.         Raven,  K.P.  Jain,  A.  and  Loeppert,  R.H.  (1998).  Arsenite  and  Arsenate  Adsorption  on  Ferrihydrite:  Kinetics, Equilibrium, and Adsorption Envelopes.  Environmental Science and Technology 32, 344-249.

5.         Huang J.G., L.J.C. (1997). Enhanced removal of As(V) from water with iron-coated spent catalyst.  Separation Science and Technology 32, 1557-1569.

6.         Vagliasindi, F.G.A., Benjamin, M.M. (1998). Arsenic removal in fresh and nom-preloaded ion exchange packed bed adsorption reactors. Water Science and Technology 38, 337-343.

7.         Bhatia, S. (1990) "Zeolite catalysis: Principles and applications" Boca Raton, Florida: CRC Press, Inc.

8.         Breck, D.W. (1974). Zeolite molecular sieves: structure, chemistry and use.  New York: John Wiley and Sons Inc.

9.         Kersaoui-Ouki, S., Cheeseman, C.R.,  and Perry, R (1994). Natural zeolite utilisation in pollution control: a review of applications to metal effluents. J. Chem. Tech. Biotechnol. 59, 121-126.

10.      Mark,  H.F.,  Othmer,  D.  F.,  Overberger,  C.  G.   and  Seaborg,  G.  T.  (1981).  Molecular  sieve.  In  Kirk  Othmer Encyclopedia of Chemical Technology, 3 Edition, New York: John Wiley and Sons Publication.

11.      Smart, L., and Moore, E. (1992). Solid state chemistry an introduction.  London: Chapman and Hall, pp. 183-198.

12.      Li, Z., Anghel, I., and Bowman, R.S. (1998).    Sorption  of  oxyanions  by  surfactant -modified zeolite.  Journal of Dispersion Science and Technology 19, 843-857.

13.      Li, Z., and Bowman, R.S. (1997). Counterion effects  on the sorption of cationic surfactant and  chromate  on natural clinoptilolite. Environmental Science and Technology 31, 2407-2412.

14.      Chmielewska-Horvathova, E. and Lesny, J. (1996).  Pollutant immobilization in column of Ag-clinoptilolite. Journal of Radioanalytical and Nuclear Chemistry 214, 209-221.

15.      Xu Y-H., O.A. and Maeda, S., (2000). Removal of arsenate, phosphate, and fluoride ions by aluminium- loaded shirasu- zeolite. Toxicological and Environmental Chemistry 76, 111-124.

16.      Elizalde-González M.P., M attusch, J., Einicke, W.D., and Wennrich, R. (2001). Sorption on natural solids for arsenic removal. Chemical Engineering Journal 81, 187-195.

17.      Tokunaga, S., Wasay, S.A., and Park, S.W. (1997). Removal of arsenic(v) ion from aqueous solutions by lanthanum compounds. Water Science and Technology 35, 71-78.

18.   Jia, C., Beaunier, P. and Massiani P. (1998).  Comparison of conventional and solid-state ion exchange procedures for the incorporation of lanthanum in H-beta zeolite. Microporous and Mesoporous Materials 24, 69-82.

19.      Masdan (2000). Thesis MS Universiti Putra Malaysia.

20.      Jia, C., M assiani, P., Beaunier P. and Barthomeuf, D., (1993).  Solid-state exchange of lanthanum in beta zeolite. Applied Catalysis A: General 106, L185-L191.

21.      Blanchard, G., Maunaye, M. and Martin, G. (1982). Removal of heavy metals from water by means of natural zeolites. Wat. Res . 18, 1501-1507.

22.      Ali, A.A.-H., and El-Bishtawi, R. (1997).  Removal of lead and nickel ions using zeolite tuff. J. Chem. Tech. Biotechnol. 69, 27-34.

23.      Vaughan, D.E.W. (1988).  The synthesis and manufacture of zeolites. Chem. Eng. Prog. 82, 25-31.

24.      Scherzer, J. (1989). Rare Earths, Extractions, Preparation and Application. In: Rare earths in cracking catalysts, R.G. Bautista and Wong, M. M. ( eds). (California: TMS Publication), pp. 317-331.

25.      Bonnin, D. (1997). Arsenic Removal from Water Utilizing Natural Zeolites. In Proceedings of the Annual Conference of the American Water Works Association. pp. 421-441.

26.      Firsching, F.H. (1992). Solubility Products of the Trivalent Rare-Earth Arsenates. Journal of Chemical Engineering Data 37, 497-499.

27.      Rawat A., M isra .M. (1998). Adsorption of the Oxyanions of Arsenic onto Lanthanum Oxide. TMS Annual Meeting 1998, 13-23.




Previous                    Content                    Next