The Malaysian Journal of Analytical Sciences
Vol 12 No 2 (2008): 486 490
ATOMIC
ABSORPTION SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNT OF COPPER IN WATER
SAMPLES AFTER PRECONCENTRATION WITH [N-[(S)-3-MERCAPTO-2-METHYLPROPIONYL]-L-PROLINE]
ON A NAPHTHALENE
H. Zavvar
Mousavi1* and H. Shirkhanloo2
2Research Institute of Petroleum
Industry, Medical Industrial Laboratory, Tehran, Iran
*Corresponding author: hzmousavi@semnan.ac.ir
Abstract
This
study presents a new procedure for preconcentration
and determination of trace level of copper (II) in water samples. The method is
based on the adsorptive enrichment of copper (II) complex with
N-[(S)-3-mercapto-2-methylpropionyl-L-proline chelate
on naphthalene column. After the preconcentration
stage, the analyte was eluted with a HNO3
solution and determined by flame atomic absorption spectrometry (FAAS). The
effect of different variables such as pH, sample volume, amount of chelate, flow rate and eluent
solution on the recovery of the analyte was investigated.
The effect of some matrix elements, such as Fe, Ni, Na, K, Ca, and Mg, on
recovery of copper has also been studied. The calibration graph was linear in
the range 25 120 µg l-1 of copper in the initial solution with r =
0.9994. The limit of detection based on 3Sb criterion was 5µg l-1
and the relative standard deviation for ten replicate measurements of 50 and 90
µg l-1 of copper was 1.7 and 2.1 %, respectively. The accuracy of
the method confirmed by analyzing of copper in certified sample material (NBS-Ounce
metal 124d). The results demonstrated a good agreement with the certified
value. The method was successfully applied for determination of copper in tap
and wastewater samples.
References
1. S.N. Luoma, Sci. Total Environ. , 28, 1 (1983).
2. J.H. Duffus, Toxicologia Ambiental,
Omega, Barcelona, (1983).
3. P.
S. Roldan, L. Ilton,C.F. Cilene and P.M. Padilh, Fuel. 84, 305, (2005).
4. Li,
Y.Y. Jiang and X. Yan, Talanta., 64, 758, (2004).
5. E.L. D. Silva,A.O. Martins, A. Valentini, V.
T. Fávere and E. Carasek, Talanta. 64, 81(2004).
6. S. Sachsenberg, T. Klenke, W.E. Krumbein and E. Zeeck, Fresenius J. Anal. Chem., 342, 163 (1992).
7. X.Y.
Zhang, S. Keiichi, A. Satoh, K. Sawada
and T. Suzuki, Anal. Sci.,
13, 891 (1997).
8. J.Wu and E. A. Boyle, Anal. Chem., 69, 2464 (1997).
9. J.
L. Itoh, T. Miyake and M. Komata,
Nippon Kagaku Kaishi., 7, 645 (1996).
10. M.C. Yebra, N. Carro, M.F. Enriquez, A. M.
Cid and A. Garcia, Analyst., 126,
933 (2001).
11. H.
Bag, M. Lale and A.R. Türker,
Fresenius J. Anal. Chem., 363,
224 (1999).
12. A.
Ali, X. Yin, H. Shen, Y. Ye and X. Gu, Anal. Chim. Acta., 392, 283 (1999).
13. K. Ohta, H. Tanahasi, T. Suziki and S.
Kaneco, Talanta., 53, 715
(2001).
14. A. Uzawa, T. Narukawa and T. Okutani, Anal. Sci., 14,
395 (1998).
15. Y. Sakai,
T. Tomura, K. Oshita and S.
Koshimizu, J.Radioanaltica
and Nuclear Chemistry. 230,
261
(1998).
16. A. Uzan, M. Soylak and L. Elc, Talanta., 54,
197 (2001).
17. N. Pourreza and H. Zavvar Mousavi, Anal.
Chim. Acta., 503, 279
(2004).
18. E. Kendüzler and A. R. Türker, Analytica
Chimica Acta., 480, 259
(2003).