The Malaysian Journal of Analytical Sciences Vol 12 No 2 (2008): 486 – 490

 

 

 

ATOMIC ABSORPTION SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNT OF COPPER IN WATER SAMPLES AFTER PRECONCENTRATION WITH [N-[(S)-3-MERCAPTO-2-METHYLPROPIONYL]-L-PROLINE] ON A NAPHTHALENE

 

H. Zavvar Mousavi1* and H. Shirkhanloo2

 

1Department of Chemistry, College of Science, Semnan University, Semnan, Iran

2Research Institute of Petroleum Industry, Medical Industrial Laboratory, Tehran, Iran

 

*Corresponding author: hzmousavi@semnan.ac.ir

 

Abstract

This study presents a new procedure for preconcentration and determination of trace level of copper (II) in water samples. The method is based on the adsorptive enrichment of copper (II) complex with N-[(S)-3-mercapto-2-methylpropionyl-L-proline chelate on naphthalene column. After the preconcentration stage, the analyte was eluted with a HNO3 solution and determined by flame atomic absorption spectrometry (FAAS). The effect of different variables such as pH, sample volume, amount of chelate, flow rate and eluent solution on the recovery of the analyte was investigated. The effect of some matrix elements, such as Fe, Ni, Na, K, Ca, and Mg, on recovery of copper has also been studied. The calibration graph was linear in the range 25 – 120 µg l-1 of copper in the initial solution with r = 0.9994. The limit of detection based on 3Sb criterion was 5µg l-1 and the relative standard deviation for ten replicate measurements of 50 and 90 µg l-1 of copper was 1.7 and 2.1 %, respectively. The accuracy of the method confirmed by analyzing of copper in certified sample material (NBS-Ounce metal 124d). The results demonstrated a good agreement with the certified value. The method was successfully applied for determination of copper in tap and wastewater samples.

 

References

1.     S.N. Luoma, Sci. Total Environ. , 28, 1 (1983).

2.       J.H. Duffus, Toxicologia Ambiental, Omega, Barcelona, (1983).

3.       P. S. Roldan, L. Ilton,C.F. Cilene and P.M. Padilh, Fuel. 84, 305, (2005).

4.       Li, Y.Y. Jiang and X. Yan, Talanta., 64, 758, (2004).

5.       E.L. D. Silva,A.O. Martins, A. Valentini, V. T. Fávere and E. Carasek, Talanta.  64,  81(2004).                 

6.       S. Sachsenberg, T. Klenke, W.E. Krumbein and E.  Zeeck, Fresenius J. Anal. Chem., 342, 163  (1992).

7.       X.Y. Zhang, S.  Keiichi, A. Satoh, K. Sawada and T. Suzuki, Anal. Sci., 13, 891 (1997).

8.       J.Wu and E. A. Boyle, Anal. Chem., 69, 2464 (1997).

9.       J. L. Itoh, T. Miyake and M. Komata, Nippon Kagaku Kaishi., 7, 645 (1996).

10.    M.C. Yebra, N. Carro, M.F. Enriquez, A. M. Cid and A. Garcia, Analyst., 126, 933 (2001).

11.    H. Bag, M. Lale and A.R. Türker, Fresenius J. Anal. Chem., 363, 224 (1999).

12.    A. Ali, X. Yin, H. Shen, Y. Ye and X. Gu, Anal. Chim. Acta., 392, 283 (1999).

13.    K. Ohta, H. Tanahasi, T. Suziki and S. Kaneco, Talanta., 53, 715 (2001).

14.    A. Uzawa, T. Narukawa and T. Okutani, Anal. Sci., 14, 395 (1998).

15.  Y. Sakai, T. Tomura, K. Oshita and S. Koshimizu, J.Radioanaltica and Nuclear Chemistry. 230, 261 

        (1998).

16.    A. Uzan, M. Soylak and L. Elc, Talanta., 54, 197 (2001).

17.    N. Pourreza and H. Zavvar Mousavi, Anal. Chim. Acta., 503, 279 (2004).

18.    E. Kendüzler and A. R. Türker, Analytica Chimica Acta., 480, 259 (2003).




Previous                    Content                    Next