Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 129 – 137

 

 

 

PRODUCTION OF HYPERBRANCHED NONAOLEATE TRIMETHYLPROPANE FOR BIOLUBRICANTS BASESTOCK

 

(Penghasilan Trimetilopropana Nonaoleat Hipercabang untuk Minyak Asas Biolubrikan)

 

Salma Samidin, Nadia Salih, Jumat Salimon*

 

School of chemical sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: jumat@ukm.edu.my

 

 

Abstract

In this study, trioleate trimethylolpropane was successfully converted into hyperbranched nonaoleate trimethylolpropane via epoxidation with formic acid and hydrogen peroxide followed by the esterification via the oxirane ring opening reaction with oleic acids (OA). Sulphuric acid (SA) was found to be an effective catalyst compared to paratoluene sulfonic acid (PTSA) in the reaction of oxirane ring opening. High yield was obtained at 95%.  Structure elucidation of the functional ester groups in hyperbranched product was confirmed by Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR), 1H and 13C spectroscopy studies.

 

Keywords:  biolubricants, hiperbranch, modification, FTIR, NMR

 

Abstrak

Dalam kajian ini, trimetilolpropana trioleat telah berjaya ditukarkan kepada hipercabang trimetilolpropana nonaoleat melalui tindak balas pengepoksidaan dengan asid formic dan hydrogen peroksida diikuti dengan tindak balas pengesteran melalui tindak balas pembukaan gelang oksirana dengan asid oleik (OA). Hasil kajian menunjukkan penggunaan asid sulfurik (SA) lebih berkesan sebagai mangkin berbanding dengan asid para toluena sulfonik (PTSA) dalam tindak balas pembukaan gelang oksirana. Peratusan hasil yang tinggi diperolehi pada 95%. Pencirian struktur kumpulan berfungsi ester dalam produk hipercabang ditentusahkan melalui kajian spektroskopi Fourier Transfomasi Inframerah (FTIR) dan 1H dan 13C Resonans Magnet Nukleus (NMR).

 

Kata kunci: Biolubrikan, hipercabang, modifikasi, FTIR, NMR

 

References

1.       André, J. (2001). Biodegradable Lubricants and Their Production Via Chemical Catalysis pp 185 -201.

2.       Amit, K.J and Amit, S. (2012). “Research Approach & Prospects of Non Edible Vegetable Oil as a Potential Resource for Biolubricant - A Review. Advanced Enggeneering and Applied Sciences, 1(1):23-32

3.       Naidir, F., Yunus, R., Idaty, T., Ghazi, M. and Ramli, I. (2012). Synthesis of Epoxidized Palm Oil-Based Trimethylolpropane Ester. Science & Technology Journal. 20(2), 331–337.

4.       Naidir, F., Yunus, R., Rashid, U., Masood, H., Ghazi, T. I. M. and Ramli, I. (2012). The kinetics of epoxidation of trimethylolpropane ester. European Journal of Lipid Science and Technology, 114(7), 816–822.

5.       Kulkarni, R. D., Deshpande, P. S., Mahajan, S. U. and Mahulikar, P. P. (2013). Epoxidation of mustard oil and ring opening with 2-ethylhexanol for biolubricants with enhanced thermo-oxidative and cold flow characteristics. Industrial Crops and Products, 49, 586–592.

6.       Hwang, H.-S. and Erhan, S. Z. (2001). Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. Journal of the American Oil Chemists’ Society, 78(12), 1179–1184.

7.       Erhan, S. Z., Adhvaryu, A. and Liu, Z. (2003). Chemical Modification of Vegetable Oils for Lubricant Basestocks. Design, Application, Performance and Emissions of Modern Internal Combustion Engine Systems and Components, pp 369–380.

8.       Erhan, S. Z., Sharma, B. K., Liu, Z. and Adhvaryu, A. (2008). Lubricant base stock potential of chemically modified vegetable oils. Journal of Agricultural and Food Chemistry, 56(19), 8919–25.

9.       Aqueous, S. & Protocol, W. (n.d.). 8.4 - Extraction and Washing Guide 61–64.

10.    Salimon, J., Abdullah, B. M., Yusop, R. M., Salih, N. and Yousif, E. (2013). Synthesis and optimization ring opening of monoepoxide linoleic acid using p-toluenesulfonic acid. SpringerPlus, 2(1), 429.

 

Previous                    Content                    Next