Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 8 – 19

 

 

 

OPTIMIZATION OF PROCESS PARAMETERS FOR THE PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL IN THE PRESENCE OF BIFUNCTIONAL γ-Al2O3-CeO2 SUPPORTED CATALYSTS

 

(Pengoptimuman Parameter Pemprosesan untuk Penghasilan Biodesel daripada Sisa Minyak Masak dengan Menggunakan Mangkin Dwifungsi Berpenyokong γ-Al2O3-CeO2)

 

Anita Ramli1* and Muhammad Farooq2

 

1Fundamental and Applied Sciences Department,

2Chemical Engineering Department,

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.

 

*Corresponding author: anita_ramli@petronas.com.my

 

 

Abstract

Huge quantities of waste cooking oils are produced all over the world every day, especially in the developed countries with 0.5 million ton per year waste cooking oil are being generated in Malaysia alone. Such large amount of waste cooking oil production can create disposal problems and contamination to water and land resources if not disposed properly. The use of waste cooking oil as feedstock for biodiesel production will not only avoid the competition of the same oil resources for food and fuel but will also overcome the waste cooking oil disposal problems. However, waste cooking oil has high acid value, thus would require the oil to undergo esterification with an acid catalyst prior to transesterification with a base catalyst. Therefore, in this study, bifunctional catalyst supports were developed for one-step esterification-transesterification of waste cooking oil by varying the CeO2 loading on γ-Al2O3. The bifunctional supports were then impregnated with 5 wt% Mo and characterized using N2 adsorption-desorption isotherm to determine the surface area of the catalysts while temperature programmed desorption with NH3 and CO2 as adsorbents were used to determine the acidity and basicity of the catalysts. Results show that the γ-Al2O3-CeO2 supported Mo catalysts are active for the one-step esterification-transesterification of waste cooking oil to produce biodiesel with the Mo/γ-Al2O3-20 wt% CeO2 as the most active catalyst. Optimization of process parameters for the production of biodiesel from waste cooking oil in the presence of this catalyst show that 81.1% biodiesel yield was produced at 110oC with catalyst loading of 7 wt%, agitation speed of 600 rpm, methanol to oil ratio of 30:1 and reaction period of 270 minutes.

 

Keywords:  biodiesel, waste cooking oil, bifunctional catalysts, γ-Al2O3-CeO2

 

Abstrak

Sisa minyak masak dihasilkan dalam kuantiti yang amat besar di seluruh dunia setiap hari terutamanya di negara membangun di mana Malaysia sahaja menghasilkan sebanyak 0.5 juta tan sisa minyak masak setahun. Kuantiti yang sangat besar ini menimbulkan masalah dari segi pelupusannya dan boleh mengakibatkan pencemaran tanah dan air jika tidak dilupuskan dengan baik. Penggunaan sisa minyak masak sebagai bahan mentah untuk penghasilan biodesel bukan sahaja dapat menghindari persaingan terhadap sumber minyak yang sama bagi sumber makanan dan bahan bakar, tetapi juga dapat menyelesaikan masalah berkaitan pelupusan sisa minyak masak yang sempurna. Walau bagaimanapun, sisa minyak masak mempunyai nilai asid yang tinggi yang memerlukan minyak itu melalui proses esterifikasi terlebih dahulu menggunakan mangkin asid sebelum proses esterifikasi menggunakan mangkin alkali. Oleh itu, dalam kajian ini, penyokong bersifat dwifungsi telah dibangunkan bagi tindak balas serentak esterifikasi-tranesterifikasi sisa minyak masak dengan pelbagai muatan CeO2 di atas γ-Al2O3. Penyokong dwifungsi itu kemudian diimpregnasi dengan 5% Mo dan dicirikan menggunakan isoterma jerapan-nyahjerapan menggunakan N2 untuk penentuan jumlah luas permukaan mangkin manakala nyahjerapan berpengatur suhu menggunakan NH3 dan CO2 sebagai bahan penjerap digunakan untuk penentuan sifat keasidan dan kealkalian mangkin. Keputusan kajian menunjukkan bahawa mangkin Mo berpenyokong γ-Al2O3-CeO2 adalah aktif di dalam tindak balas serentak esterifikasi-tranesterifikasi sisa minyak masak untuk penghasilan biodesel dengan Mo/γ-Al2O3-20 wt% CeO2 merupakan mangkin yang paling aktif. Pengoptimuman parameter pemprosesan untuk penghasilan biodesel daripada sisa minyak masak menggunakan mangkin ini mendapati 81.1% biodesel dapat dihasilkan pada suhu 110oC dengan muatan mangkin sebanyak 7%, kelajuan pengacauan setinggi 600 rpm, nisbah methanol kepada minyak sebanyak 30:1 dan masa tindak balas selama 270 minit.

 

Kata kunci:  biodesel, sisa minyak masak, mangkin dwifungsi, γ-Al2O3-CeO2

 

References

1.       Fazal, M.A., Haseeb, A.S.M.A., Masjuki, H.H. (2011). Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renew. Sustainable Energy Rev., 15: 1314-1324.

2.       Supamathanon, N., Wittayakun, J., Prayoonpokarach, S. (2011). Properties of Jatropha seed oil from Northeastern Thailand and its transesterification catalyzed by potassium supported on NaY zeolite. J. Ind. Eng. Chem. 17: 182–185.

3.       Robles-Medina, A., González-Moreno, P.A., Esteban-Cerdán, L., Molina-Grima, E. (2009). Biocatalysis: towards ever greener biodiesel production. Biotechnol. Adv. 27: 398-408.

4.       Zabeti, M., Wan Daud, W.M.A., Aroua, M.K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Process. Technol. 90: 770-777.

5.       Zhang, Y., Dubé, M.A., McLean, D.D., Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 90: 229-240.

6.       Math, M.C., Kumar, S.P., Chetty, S.V. (2010). Technologies for biodiesel production from used cooking oil - A review. Energy Sustainable Develop. 14: 339-345.

7.       Endalew, A.K., Kiros, Y., Zanzi, R. (2011). Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy, 36: 2693-2700.

8.       Farooq, M., Ramli, A., Subbarao, D. (2011). Physiochemical Properties of γ-Al2O3-MgO and γ-Al2O3-CeO2 Composite Oxides. J. Chem. Eng. Data, 57: 26-32.

9.       Issariyakul, T., Kulkarni, M.G., Dalai, A.K., Bakhshi, N.N. (2007). Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process. Technol. 88: 429-436.

10.    Yu, Q., Wu, X., Tang, C., Qi, L., Liu, B., Gao, F., Sun, K., Dong, L., Chen, L. (2011). Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO2–MOx (M = Mg2+, Al3+, Si4+) mixed oxides for CO oxidation. J. Colloid Interface Sci.  354: 341-352.

11.    García-Diéguez, M., Finocchio, E., Larrubia, M.A., Alemany, L.J., Busca, G. (2010). Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J.  Catal. 274: 11-20.

12.    Damyanova, S., Perez, C.A., Schmal, M., Bueno, J.M.C. (2002). Characterization of ceria-coated alumina carrier. Appl. Catal.  A: General, 234: 271-282.

13.    Wattoo, M.H.S., Mazhar, M., Tufail, M., Wattoo, F.H., Ahmad, M., Tirmizi, S.A., Iqbal, J. (2008). X-ray diffraction analysis to study the effect of metal loading and calcination and reduction temperatures for supported palladium catalysts. J. Chem. Soc. Pakistan, 30: 377-384.

14.    Gao, L., Teng, G., Xiao, G., Wei, R. (2010). Biodiesel from palm oil via loading KF/Ca–Al hydrotalcite catalyst. Biomass Bioenergy, 34: 1283-1288.

15.    Boro, J., Thakur, A.J., Deka, D. (2011). Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process. Technol.  92: 2061-2067.

16.    Wen, Z., Yu, X., Tu, S.T., Yan, J., Dahlquist, E. (2010). Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresour. Technol. 101: 9570-9576.

17.    Hoque, M.E. Singh, A., Chuan, Y.L. (2011). Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass Bioenergy, 35: 1582-1587.

18.    Gutiérrez-Ortiz, J.I., de Rivas, B., López-Fonseca, R., González-Velasco, J.R. (2005). Characterization of the catalytic properties of ceria-zirconia mixed oxides by temperature-programmed techniques. J. Thermal Anal. Calorimetry, 80: 225-228.

19.    Kumar, M., Aberuagba, F., Gupta, J.K., Rawat, K.S., Sharma, L.D., Murali, D.G. (2004). Temperature-programmed reduction and acidic properties of molybdenum supported on MgO–Al2O3 and their correlation with catalytic activity. J. Mol. Catal.  A: Chem.  213(2): 217-223.

20.    Ramachandran, K., Sivakumar, P., Suganya, T., Renganathan, S. (2011). Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresour. Technol. 102: 7289-7293.

21.    Jain, S., Sharma, M.P., Rajvanshi, S. (2011). Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Process. Technol. 92: 32-38.

22.    Noureddini, H., Zhu, D. (1997). Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 74: 1457-1463.

23.    Ngamcharussrivichai, C., Totarat, P., Bunyakiat, K. (2008). Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Appl. Catal. A: General, 341: 77-85.

 

Previous                    Content                    Next