Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 20 – 30

 

 

 

1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE PRETREATMENT ON MALAYSIA LIGNOCELLULOSIC WASTES

 

(Prarawatan 1-Butil-3-metilimidazolium Klorida pada Sisa Lignoselulosa di Malaysia)

 

Loh Poh Lee, Nur Hasyareeda Hassan*, Muhammad Rahimi Yusop

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor, Malaysia

 

*Corresponding author: syareeda@ukm.edu.my

 

 

Abstract

Ionic liquids (ILs) are of great interest as potential solvents for the production of fuels from lignocellulosic biomass which is a potential source of biofuels. To study the effects of pretreatment, 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was used to pretreat woody plants, kempas (Koompassia malaccensis) and jelutong (Dyera costulata), and non-woody plants, kenaf (Hibiscus cannabinus) and rice husk (Oryza sativa) at 120 for 24 h. Cellulose was regenerated by the addition of water. The cell wall composition and structure of the lignocellulosic biomasses before and after the ILs pretreatment were observed and characterized using field emission scanning electron microscopy (FESEM), attenuated total reflectance fourier transform infrared (ATR FT-IR) spectroscopy, and X-ray diffraction (XRD). After the pretreatment, enzymatic hydrolysis was carried out to identify the total reducing sugars (TRS) yields using dinitrosalicyclic acid (DNS) method. Regenerated lignocellulosic biomasses resulted in high TRS yields compared to their counter-parts which are in agreement with the findings of FESEM, ATR FT-IR and XRD that exhibited regenerated cellulose were less crystalline and more amorphous upon IL pretreatment. Therefore, kempas and jelutong can be alternate sources for the biofuels production.

 

Keywords: [Bmim]Cl, Dyera costulata, enzymatic hydrolysis, Hibiscus cannabinus, Koompassia malaccensis, Oryza sativa

 

Abstrak

Cecair Ionik (CI) digunakan sebagai pelarut untuk penghasilan biobahan api daripada biojisim lignoselulosa yang merupakan sumber biobahan api berpotensi. Untuk mengkaji kesan-kesan prarawatan, 1-butil-3-metilimidazolium klorida ([Bmim]Cl) telah digunakan untuk merawat pelbagai tumbuhan berkayu, kempas (Koompassia malaccensis) dan jelutong (Dyera costulata), dan tumbuhan tidak berkayu, kenaf (Hibiscus cannabinus) dan sekam padi (Oryza sativa) pada 120 selama 24 h. Selulosa diperoleh semula dengan penambahan air. Komposisi dinding sel dan struktur biojisim lignoselulosik sebelum dan selepas prarawatan CI diperhatikan dan dianalisis dengan menggunakan mikroskop elektron imbasan medan pancaran (FESEM), spektroskopi inframerah transformasi Fourier pantulan keseluruhan dikecilkan (ATR FT-IR), dan belauan sinar-X (XRD). Selepas prarawatan, hidrolisis enzim telah dijalankan untuk mengenal pasti hasil gula penurun dengan menggunakan kaedah DNS. Biojisim lignoselulosa yang dirawat dengan CI menunjukkan hasil gula penurun lebih tinggi berbanding dengan biojisim lignoselulosa tidak dirawat. Ini juga disokong oleh analisis FESEM, ATR FT-IR dan XRD yang menunjukkan selulosa diperoleh semula adalah kurang berhablur dan lebih amorfus selepas prarawatan dengan CI. Oleh itu, kempas dan jelutong boleh dijadikan sumber sampingan dalam penghasilan biobahan api.

 

Kata kunci:     [Bmim]Cl, Dyera costulata, hidrolisis berenzim, Hibiscus cannabinus, Koompassia malaccensis, Oryza  sativa

 

References

1.       Yat, S. C., Berger, A. and Shonnard, D. R. (2008). Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresource Technology. 99:3855-3863.

2.       Christensen, C. H., Rass-Hansen, J., Marsden, C. C., Taarning, E. and Eqeblad, K. (2008). The renewable chemicals industry. ChemSusChem. 1:283-289.

3.       Department of Statistics, Malaysia (2012) Statistical Handbook Malaysia. http://www.statistics.gov.my/ portal/download_Handbook/files/BKKP/Buku_Makumat_Perangkaan_2012.pdf. Accessed 15 February 2014

4.       Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X. and Saddler, J. N. (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Advances in Biochemical Engineering/Biotechnology. 5: 904–910.

5.       Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 83(1): 1–11.

6.       Qian, W., Jin, E., Bao, W. and Zhang, Y. G. (2005). Clean and highly selective oxidation of alcohols in an ionic liquid by using an ion-supported hypervalent iodine (III) reagent. Angewandte Chemie International Edition. 44(6): 952-955.

7.       Dupont, J., Souza, R. F. D. and Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews.102(10): 3667-3692.

8.       Ang, T. N., Ngoh, G. C., Chua, A. S. M. and Lee, M. G. (2012). Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnology for Biofuels. 5: 67-77.

9.       Lee, S. H., Doherty, T. V., Linhardt, R. J. and Dordick, J. S. (2009).Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering. 102(5): 1368-1376.

10.    Pu, Y. Q., Jiang, N. and Ragauskas, A. J. (2007). Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology. 27(1): 23-33.

11.    Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphyb, R. J. and Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid water mixtures. Green Chemistry. 13(9): 2489-2499.

12.    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31(3): 426–428.

13.    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry. 59(2): 257–268.

14.    Aita, Z. Q. G. M. and Walker, M. S. (2012). Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresource Technology. 117:251-256.

15.    Çetinkol, O. P., Dibble, D. C., Cheng, G., Kent, M. S., Knierim, B., Auer, M., Wemmer, D. E., Pelton, J. G., Melnichenko, Y. B., Ralph, J., Simmons, B. A. and Holmes, B. M. (2010). Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels. 1(1): 33-46.

16.    Nikzad, M., Movagharnejad, K., Najafpour, G. D. and Talebnia, F. (2012). Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production. International Journal of Engineering. 26:455-464.

17.    Hurtubise, F. G. and Krassig, H. (1960). Classification of fine structural characteristics in cellulose by infrared spectroscopy. Analytical Chemistry. 32(2): 177-181.

18.    Labbe, N., Rials, T. G., Kelley, S. S., Cheng, Z. M., Kim, J. Y. and Li, Y. (2005). FT-IR imaging and pyrolysis-molecular beam mass spectrometry: New tools to investigate wood tissues. Wood Science and Technology. 39(1): 61-77.

19.    Muller, G., Bartholme, M., Kharazipour, A. and Polle, A. (2008). FTIR-ATR spectroscopic analysis of changes in fiber properties during insulating fiberboard manufacture of beech wood. Wood Fiber Science. 40(4): 532-543.

20.    Proniewicz, L. M., Paluszkiewicz, C., Weselucha-Birczynska, A., Majcherczyk, H., Baranski, A. and Konieczna, A. (2001). FT-IR and FT-Raman study of hydrothermally degradated cellulose. Journal of Molecular Structure. 596(1-3): 163-169.

21.    Zhang, H., Wu, J., Zhang, J. and He, J. (2005). 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. 38(20): 8272–8277.

22.    O’sullivan, A. C. (1997). Cellulose: the structure slowly unravels. Cellulose. 4:173–207.

23.    Sugiyama, J., Vuong, R. and Chanzy, H. (1991). An electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules. 24:4168-4175.

24.    Cheng, G., Varanasi, P., Li, C., Liu, H., Melnichenko, Y. B., Simmons, B. A., Kent, M. S. and Singh, S. (2011). Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. American Chemical Society. 12(4): 933-941.

25.    Ng, S. H., Paridah Md. Tahir., Rosfarizan Mohamad., Luqman C. Abdullah., Choo, A. C. Y. and Liong, Y. Y. (2013). Effect of pretreatment process on bioconversion of kenaf (Hibiscus cannabinus L.) core to glucose. BioResources. 8:2010-2017.

26.    Ooi, B. G., Rambo, A. L. and Hurtado, M. A. (2011). Overcoming the recalcitrance for the conversion of kenaf pulp to glucose via microwave-assisted pre-treatment processes. International Journal of Molecular Sciences. 12:1451-1463.

 

Previous                    Content                    Next