Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 173 – 178

 

 

 

INTERACTION OF HYALURONIC ACID (HA) WITH DIPALMITOYLPHOSPHATIDYLCHOLINE (DPPC) AND ITS EFFECT ON THE STABILITY OF HA-LIPID TO GAMMA IRRADIATION

 

(Interaksi Asid Hyaluronik (HA) dan Dipalmitoilfosfatidilkolina (DPPC) dan Kesan Penyinaran Gama ke atas Kestabilan HA-Lipid)

 

Ainee Fatimah Ahmad, Irman Abdul Rahman*, Hur Munawar Kabir Mohd, Faizal Mohamed, Shahidan Radiman, Muhamad Samudi Yasir

 

School of Applied Physics,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: irman@ukm.edu.my

 

 

Abstract

DPPC lipids are extensively utilized as a biomembrane model as they resembled biological cells and their significance in various physiological functions particularly in drug delivery system. The synovial joint fluid containing hyaluronic acid, proteins, proteoglycans and lipids. Hyaluronic acid (HA) is the most signified constituent in the synovial joint fluid and functions as lubricant, nutrient carrier and shock absorber. Gamma irradiation has also been discovered to be effeciently in depolymerizing and cleaving molecular chains which initiated changes in chemical composition as well as its physiological functions due to free radical. This research are conducted to investigate the hyaluronic acid (HA) with 1,2 -dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) interaction in form of vesicles and its effect on the stability of HA-DPPC structure to gamma radiation. The size distribution of DPPC vesicles measured by Dynamic Light Scattering (DLS) is between 100 to 200 nm in diameter. HA was added into the vesicles and characterized by using TEM to determine vesicle size distributions, fusion and rupture of HA-DPPC structure. The results demonstrated that the size of the vesicles approximately between 200 to 400 nm which caused by vesicles fusion with HA and formed even larger vesicles. After being irradiated by 0 to 200 Gy, the Z-average of DPPC vesicles decreased to 164.7 nm meanwhile for DPPC in presence of HA, the Z-average is 391.6 nm. FTIR spectra were carried out to clarified formation of double bonds at ~1700-1750 cm-1 which leads to formation of pyrancarboxylic acid rings and modified the structure of HA, hence its effect the structure of the DPPC vesicles.

 

Keywords: hyaluronic acid (HA), dipalmitoylphosphatidylcholine (DPPC), gamma irradiation

 

Abstrak

Lipid DPPC digunakan secara meluas sebagai model biomembran kerana mereka menyerupai sel-sel biologi dan kepentingannya dalam pelbagai fungsi fisiologi terutamanya dalam sistem penyampaian ubat. Cecair sendi sinovial mengandungi asid hyaluronik, protein, proteoglikan dan lipid. Asid hyaluronik (HA) adalah unsur yang penting di dalam cecair sendi sinovial dan berfungsi sebagai pelincir, pembawa nutrien dan penyerap hentakan. Sinaran gama telah ditemui sangat berkesan dalam dipolimerasikan dan memutuskan rantaian molekular yang telah menyebabkan perubahan dalam komposisi kimia serta fungsi fisiologi disebabkan  radikal bebas. Kajian ini dijalankan untuk mengkaji interaksi asid hyaluronik (HA) dengan 1,2-dipalmitoil-sn-glicero-3-fosfatidilkolina (DPPC) dalam bentuk vesikel dan kesannya terhadap kestabilan struktur HA-DPPC terhadap sinaran gamma. Saiz vesikel DPPC adalah antara 100 hingga 200 nm diameter diukur dengan menggunakan Serakan Cahaya Dinamik (DLS). HA telah dicampurkan ke dalam vesikel dan dicirikan dengan menggunakan TEM untuk menentukan taburan saiz vesikel, gabungan dan pecahan struktur HA-DPPC. Hasil kajian menunjukkan bahawa saiz vesikel kira-kira antara 200 hingga 300 nm yang disebabkan oleh gabungan vesikel dan HA membentuk vesikel yang lebih besar. Setelah disinarkan pada 0-200 Gy, purata-Z vesikel DPPC menurun kepada 164.7 nm manakala untuk DPPC dalam kehadiran HA, purata-Z adalah 391.6 nm. Spektra FTIR telah dijalankan untuk menjelaskan pembentukan ikatan berganda pada ~1700-1750 cm-1 membawa kepada perubahan pembentukan cincin asid pyrancarboxylic acid dan mengubah struktur HA, oleh itu, struktur DPPC vesikel turut berubah.

 

Kata kunci: asid hyaluronik, dipalmitoilfosfatidilkolina (DPPC), sinar gama

 

References

1.        Garg, H.G. and Hale, C.A. (2004). Chemistry and Biology of Hyaluronan. London.

2.        Pasquali-Ronchetti, I., Quaglino, D., Mori, G., Bachelli B. and Ghosh, P.  (1997). Hyaluronan-Phospholipids Interactions Journal of Structural Bioogy. 120(1): 1 – 10.

3.        Crescenzi, V., Taglienti, A. and Pasquali-Ronchetti, I. (2004). Supramolecular Structures Prevailing in Aqueous Hyaluronic Acid and Phospholipid Vesicles Mixtures: An Electron Microscopy and Rheometric Study. Colloids and Surfaces A: Physicochemical. Engineering Aspects 245(1-3): 133- 135.

4.        Edwards, K.A. and Baeumner, A.J. (2006).Analysis of Liposomes. Talanta 68 (5): 1432-1441.

5.        Angelova, M., and Tsoneva, I. (1999).Interactions of DNA with Giant Liposomes. Chemistry and Physics of Lipids 101 (1): 123–137.

6.        Fischer, A., Oberholzer, T and Luisi, P. (2000). Giant Vesicles as Models to Study the Interactions between Membranes and Proteins. Biochemica et Biophysica Acta 1467 (1): 77–188.

7.        Romanowski, M., Zhu, X., Ramaswami, V., Misicka, A., Lipkowski, A., Hruby,V and O’Brien, D. (1997). Interaction of a Highly Potent Dimeric Enkephalin Analog, Biphalin, with Model Membranes. Biochemica et Biophysica Acta 1329 (2): 245–258.

8.        Trombetta, D., Arena, S., Tomaino,A., Tita, B., Bisignano,.G, Pasquale, A. ans Saija, A. (2001). Effect of the Exposure to Gentamicin and Diltiazem on the Permeability of Model Membranes. Il Farmaco 56 (5): 447–449.

9.        Grainger, R. and Cicuttini, F.M. (2004). Medical Management of Osteoarthritis of the Knee and Hip Joints. The Medical Journal of Australia 180 (5): 232–236.

10.     Wang, S.J., Lin, W.Y., Chen, M.N., Chen, J.T., Ho, W., Hsieh, B.T., Huang, H., Shen, L.H., Ting, G. and Knapp Jr. F.F. (2001). Histologic Study of Effects of Radiation Synovectomy with Rhenium-188 Microsphere. Journal of Nuclear Medicine Biology 28(6): 727-732.

11.     Kawano, T., Miura, H., Mawatari, T., T. Moro-Oka, T., Nakanishi, Y., Higaki, H. and Iwamoto, Y. (2003). Mechanical Effects of the Intraarticular Administration of High Molecular Weight Hyaluronic Acid plus Phospholipid on Synovial Joint Lubrication and Prevention of Articular Cartilage Degeneration in Experimental Osteoarthritis. Arthritis Rheumatology 48 (7): 1923–1929.

12.     Ghosh, P., Hutadolik, N., Adam, N. and Lentini, A. (1994). Interactions of Hyaluronan (Hyaluronic Acid) with Phospholipids as Determined by Gel Permeation Chromatography, Multi-Angle Laser-Light-Scattering Photometry and 1H-NMR Spectroscopy. International Journal of Biological Macromolecules 16(5): 237-244.

13.     Charlesby, A. (1982). Crosslinking and Degradation of Polymers. Radiatian Physics and Chemistry 18(1-2): 59-66.

14.     Sokhey, A.S. and Chinnaswamy, R. (1992). Physicochemical Properties of Irradiation Modified Starch Extrudates. Food Structure 11(4): 361–371.

15.     Zegota, H. (1999). The Effect of γ-Irradiation on Citrus Pectin in N2O and N2O/O2 Saturated Aqueous Solutions. Food Hydrocolloids 13(1): 51–58.

16.     Choi, W.S., Ahn, K. J., Lee, D.W., Byun, M.W. and Park, H.J.. (2002). Preparation of Chitosan Oligomers by Irradiation. Polymer Degradation and Stability 78(3): 533–538.

17.     Bibi, S., Kaur, R., Henriksen-Lacey, M.E., McNeil, S., Wilkhu, J., Lattmann, E., Christensen, D.R., Mohammed, A.  and Perrie, Y. (2001). Microscopy Imaging Of Liposomes: From Coverslips to Enviromental SEM. International Journal of Pharmaceutics 417(1-2): 138 – 150.

18.     Sultanov, K. and Turaev, A.S.. (1996). Mechanism of the Radiolytic Transformation of Cellulose. Chemistry of Natural Compound 32(5): 728-733

19.     Miller, R.J. and Shiedlin, A. (2002). Molecular Weight Reduction of Polymer Using Irradiation Treatment. United States Patent No.6,383,344b1.

20.     Trommer, H., Bottcher, R., Poppl, A., Hoentsch, J., Wartewig, S. and Neubert, R.H.H. (2002). Role of Ascorbic Acid in Stratum Corneum Lipid Models Exposed to UV Irradiation. Pharmaceutical Research 19(7): 982 – 990.

21.     Konings, A.W.T. (1984). Lipid Peroxidation in Liposomes. In: G. Gregoriadis (Ed.). Liposome Technology, Vol. I. Crc Press, Florida, pp. 139 – 161.

22.     Chatterjee, S.N. and Agarwal, S. (1988). Liposomes as Membrane Model for Study of Lipid Peroxidation. Free Radical Biology and Medicine 4(1): 51–72.

23.     Selser, J.C., Yeh, Y. and Baskin, R.J. A . (1976).Light Scattering Characterization of Membrane Vesicles. Biophysical Journal 16 (4): 337 -356.

24.     Kim, J.K., Srinivasan, P., Kim, J.H., Choi, J.I., Park, H.J., Byun, M.W., and Lee, J.W. (2008). Structural and Antioxidant Properties of Gamma Irradiated Hyaluronic Acid. Food Chemistry 109(4): 763-770.

 

Previous                    Content                    Next