Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 163 – 172

 

 

 

PHOTOGRAFTING OF POLYACRYLAMIDE HYDROGEL COATING ONTO VARIOUS POLYETHYLENE TEREPHTHALATE TEXTILES

 

(Pencantuman Melalui Pencahayaan Salutan Hidrogel Poliakrilamida ke atas Pelbagai Jenis Tekstil Polietilena Tereftalat)

Nurul Hazlina Naemuddin1, Siti Samahani Suradi1, Jamarosliza Jamaluddin1,2, Nadia Adrus1,2*

 

1Department of Polymer Engineering,

2Biopolymer Research Group, Department of Polymer Engineering,

Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81000 Skudai, Johor, Malaysia

 

*Corresponding author: nadia@cheme.utm.my

 

 

Abstract

In this paper, polyacrylamide (PAAm) hydrogels grafted via photopolymerization onto various types of polyethylene terephthalate (PET) as matrix were designed and synthesized. The investigation was carried out based on thickness (0.02 -0.07 mm) of nonwoven PET textiles from various resources as well as commercial PET membrane. In this study, PET matrices with a disk shape of 4.5 cm in diameter were coated with thin hydrogel using UVA photopolymerization system. The resulting grafted PAAm-g-PET was examined through degree of grafting (DG) and characterized by using Fourier Transformed Infrared Spectroscopy (FTIR). The DG above 50 % results showed the ability of PAAm hydrogel to be grafted onto PET. The various range of thickness and surface of PET also gave an impact onto the performance of grafting of PAAm onto PET. FTIR results also confirmed the addition of amide group after grafting process (1720 cm-1, 1100 cm-1, 850 cm-1). The hydrophilicity of hydrogels was reported to impart oil fouling resistance. We expect that grafted hydrogel layer has fascinating future for oil/water separation.

 

Keywords:  polyacrylamide (PAAm), hydrogel, polyethylene terephthalate (PET), Fourier Transformed Infrared Spectroscopy (FTIR)

 

Abstrak

Dalam kertas ini, hidrogel poliakrilamida (PAAm) dicantumkan pada beberapa jenis polietilena tereftalat (PET) sebagai matriks dengan menggunakan teknik pempolimeran cahaya telah direka dan disintesis. Kajian ini telah dilaksanakan berdasarkan ketebalan (0.02-0.07 mm) tekstil PET bukan tenunan daripada pelbagai sumber yang berbeza dan juga membran PET komersial. Melalui kajian ini, tekstil PET dipotong dalam bentuk cakera yang berdiameter 4.5 cm telah disaluti dengan lapisan hidrogel yang nipis menggunakan sistem pempolimeran cahaya UVA. Hasil cantuman PAAm-g-PET dianalisis melalui darjah cantuman (DG) dan dicirikan menggunakan spektroskopi inframerah transformasi Fourier (FTIR). Hasil 50 % DG dan ke atas dapat membuktikan keupayaan sifat hidrogel PAAm yang dicantumkan dengan PET. Ketebalan dan permukaan PET yang berbeza turut memberi kesan terhadap kebolehupayaan cantuman antara PAAm dan PET. Keputusan FTIR juga mengesahkan penambahan kumpulan amida selepas proses cantuman (1720 cm-1, 1100 cm-1, 850 cm-1). Sifat hidrofilik hidrogel dilaporkan memberikan rintangan terhadap kotoran minyak. Kami menjangkakan bahawa lapisan hidrogel yang dicantumkan mempunyai masa depan yang baik dan menarik untuk pengasingan minyak/air.

 

Kata kunci: poliakrilamida (PAAm), hidrogel, polietilena tereftalat (PET), Spektroskopi Inframerah Transformasi Fourier (FTIR)

 

References

1.       Kumar, A. Srivastava, I. Galaev and B. Mattiasson. (2007). Adjuvant properties of a biocompatible thermo-responsive polymer of N-isopropylacrylamide in autoimmunity and arthritis. Program Polymer Science, 32: 1205-1237.

2.       D. Wandera, S. R. Wickramasinghe and S. M. Husson. (2010). Stimuli-responsive membrane. Journal Membrane Science, 357: 6-35.

3.       Q. Yang, N. Adrus, F. Tomicki, M. Ulbricht. (2011). Composites of functional polymeric hydrogels and porous membranes. Journal of Material Chemistry, 21: 2783-2811.

4.       Z. Jovanović, A. Krklješ, J. Stojkovska, S. Tomić, B. Obradović, V. Miškorić-Stanković, Z. Kačarević-Popović. (2011). Synthesis and characterization of silver/poly (N-vinyl-2-pyrrolidone) hydrogel nanocomposites obtained by in situ radiolytic method. Radiation Physics and Chemistry, 80: 1208-1215.

5.       N. Adrus. (2012). Stimuli-Responsive Hydrogels and Hydrogel Pore-Filled Composite Membranes. Department of Chemistry, Universitat Duisburg-Essen, Germany: 1-148.

6.       P. T. Charles, V. R. Stubbs, C. M. Soto, B. D. Martin, B. J. White, C. R. Taitt. (2009). Reduction of non-specific protein adsorption using Poly(ethylene) glycol (PEG) modified Polyacrylate hydrogels in immunoassays for Staphlococcal Enterotoxin B Detection. Sensor, 9: 645-655.

7.       R. Kunz, C. Anders, L. Heinrich. (1999). Investigation into the mechanism of bacterial adhesion to hydrogel-coated surfaces. Journal of Material Science Material Medicine, 10: 649-652.

8.       R. Yoshida, and T. Okano. (2010). Stimuli-Responsive Hydrogels and Their Application to Functional Material, in R.M.    Ottenbrite, K. Park, T. Okano (Eds.) Biomedical Applications of Hydrogel Handbook, Springer New York: 19-43.

9.       D. C. Lin, B. Yurke, N. A. Langrana. (2004). Mechanical Properties of a Reversible, DNA-Crosslinked Polyarcylamide Hydrogel. Biomechanical, 126: 104-110.

10.    L. Yu, S. Zhang, W. Liu, X. Zhu, X. Chen. (2010). Improving the flame retardancy of PET fabrics by photo-induced grafting. Polymer Degradation and Stability, 95: 1934-1942.

11.    R. J. Pelham, Y. L. Wang. (1997). Proc Natl Acad Sci USA, 94:13661-13665

12.    Y. L Wang, R. J.  Pelham. (1998). Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. In: Vallee RB, editor Molecular motors and the cytoskeleton part B. San Diego: Academic Press: 489-496.

13.    D. S. Gray, J. Tien, C. S. Chen. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned   Young’s modulus. Journal of  Biomedical Material Resources, 66: 605-614.

14.    H. B. Wang, M. Dembo, Y. L. Wang. (2000). Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol, 279:1345-1350.

15.    E. J. Semler, P. A. Lancin, A. Dasgupta, P. V. Moghe. (2005). Engineering hepatocellular morphogenesis and function  via ligand-presenting hydrogels with graded mechanical compliance. Biotechnology Bioengineering, 89: 296-307.

16.    C. A. Reinhart-King, M. Dembo, D. A. Hammer (2003). Endothelial Cell Traction Forces on RGD-Derivatized Polyacrylamide Substrata. Langmuir, 19:1573-1579.

17.    D. Hunkeler, A. E. Hamielic (1991). Water-Soluble Polymers: Synthesis, Solution Properties and Application. American Chemical Society, Washington DC: 82-104.

18.    T. Tkavc, I. Petrinic, T. Luxbacher, A. Vesel, T. Ristic, L. F. Zemljic (2014). Influence of O2 and CO2 plasma treatment on the deposition of chitosan onto polyethylene terephthalate (PET) surfaces. International Journal of Adhesion and Adhesive, 48: 168-176.

19.    D. Ilaria, T. Paola, F. S Philippe, P. Dirk, A. N Vicent, F. Guiliano (2009). Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR and Fluorescence Spectroscopy Study. Biotechnology and Bioengineering, 103: 845-856.

20.    C. M. Magin, J. A. Finlay, G. Clay, M. E. Callow, J. A. Callow, A. B. Brennan (2011). Antifouling performance of cross-linked hydrogels: Refinement of an Attachment Model. Biomacromolecules, 12: 915-922.

21.    J. Lei, C. Mayer, V. Freger, M. Ulbricht (2013). Synthesis and Characterization of Poly (ethylene glycol) Methacrylate Based Hydrogel Networks for Anti-Biofouling Applications. Macromolecules Materials and Engineering, 298: 967-980.

22.    D. M. Yebra, S. Kiil, K. D- Johansen (2004). Antifouling technology- past, present and future steps towards efficient and environmentally friendly antifouling coating. Progress in Organic Coating, 50: 75-104.

23.    Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang (2011). A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Advanced Material, 23: 4270-4273.

24.    D. Praschak, T. Bahners, E. Schollmeyer (2004). Excimer UV lamp irradiation induced grafting on synthetic polymers. Journal of Applied Science, 71: 577-581.

25.    T. Bahners, T. Textor, E. Schollmeyer (2004), in: K. L. Mittal (Ed.), Polymer Surface Modification: Relevance to adhesion, vol 3, VSP, Utrecht, pp. 97-124.

26.    N. Hassan, T. Bahners, A. Wego, J. S. Gutmann, M. Ulbricht (2012). Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide. Applied Surface Science, 259: 261-269.

27.    M. Pandey, M. C. I. Mohd Amin, N. Ahmad, M.M Abeer (2013). Rapid Syhnthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide Based Hydrogel for Drug Delivery. Journal of Polymer Science, Hindawi: 1-10.

28.    M. Diebara, J. P. Stoguert, M. Abdesselam, D. Muller, A. C. Chami (2012). FTIR analysis of polyethylene terephthalate by Me V He+. Nuclear Instrument and methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 274: 70-77.

29.    S. Varvarenko a, A. Voronov b, V. Samaryk a, I. Tamavchyka, N. Nosovaa, A. Kohut, S. Voronov (2010). Covalent grafting of polyacrylamide-based hydrogels to a polypropylene surface active with functional polyperoxide. Reactive and Functional Polymer, 70: 647-655.

30.    K. S. Soppirmath, T. M. Aminabbavi (2002). Water transport and drug release study from cross-linked polyacrylamide grafted microspheres for the controlled release application. European Journal of Pharmaceutical and Biopharmaceutics, 53: 87-98.

31.    B. Gupta, C. Plummer, I. Bisson, P. Frey, J. Hilborn (2002). Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials, 23: 863-871.

 

Previous                    Content                    Next