Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 275 - 283

 

 

 

FORMULATION AND PHYSICAL CHARACTERIZATION OF MICROEMULSIONS BASED CARBOXYMETHYL CELLULOSE AS VITAMIN C CARRIER

 

(Formulasi dan Sifat Fizikal Mikroemulsi Berasaskan Karboksimetil Selulosa sebagai Pembawa Vitamin C)

 

Suria Ramli1*, Safiah Mohd Ja’afar1, Muhd Asri Abd Sisak1, Norhidayu Zainuddin1, Irman Abdul Rahman2

 

1School of Chemical Sciences and Food Technology,

2School of Applied Physics,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: su_ramli@ukm.edu.my

 

 

Abstract

The main purpose of this research is to develop a cellulose derivative based microemulsion for transdermal delivery system. In this research, cellulose derivative used is carboxymethyl cellulose (CMC) that was converted from cellulose by etherification reaction and analysed by FTIR instrument. The degree of substitution (DS) for carboxymethyl cellulose is 0.492. Microemulsion system consists of oleic acid as oil phase, Tween 20 as surfactant and propylene glycol as co-surfactant. The active ingredient used in this system is vitamin C. Determination of microemulsion area in the ternary phase diagram was done by titration method. From the result, microemulsion system with surfactant/co-surfactant ratio (Km=3:1) produced the largest surface area in the ternary phase diagram. Microemulsions with and without vitamin C and CMC were characterized using dynamic light scattering (DLS), electrical conductivity and rheometer. For size particle analysis, system without vitamin C and CMC have microemulsion droplet size between 20-200 nm. Based on the electrical conductivity and viscosity test, phase transition occurred in the microemulsion system from water-in-oil (w/o) to bicontinuos phase at 20 wt. % water percentage. The stability test showed microemulsion systems with the percentage of water up to 30 wt. % were stable at temperatures 4 °C, 25 °C and 40 °C upon three weeks storage.

 

Keywords: microemulsions, carboxymethyl cellulose, vitamin C, ternary phase diagram

 

Abstrak

Tujuan penyelidikan ini dijalankan adalah untuk menghasilkan sistem mikroemulsi berasaskan terbitan selulosa bagi sistem penghantaran transdermal. Dalam kajian ini, terbitan selulosa yang digunakan dalam sistem mikroemulsi adalah karboksimetil selulosa (CMC) yang dihasilkan melalui tindak balas pengeteran selulosa dan dicirikan menggunakan instrumen FTIR. Darjah penggantian (DS) bagi selulosa karboksimetil adalah sebanyak 0.492. Penghasilan sistem mikroemulsi pula terdiri daripada asid oleik sebagai fasa minyak, Tween 20 sebagai surfaktan dan propilena glikol sebagai ko-surfaktan. Bahan aktif yang dimuat dalam sistem mikroemulsi adalah vitamin C. Rajah fasa ternari dibina bagi menentukan rantau pembentukan mikroemulsi dengan menggunakan kaedah penitratan air. Hasil kajian menunjukkan sistem mikroemulsi dengan nisbah surfaktan/ko-surfaktan (Km=3.1) membentuk rantau mikroemulsi yang paling luas dalam rajah fasa ternari. Mikroemulsi dengan dan tanpa vitamin C dan CMC telah dicirikan menggunakan serakan cahaya dinamik (DLS), konduktiviti elektrik dan reometer. Bagi analisis saiz partikel, sistem tanpa penambahan vitamin C dan CMC berada dalam sistem julat mikroemulsi iaitu antara 20-200 nm. Ujian konduktiviti dan kelikatan menunjukkan terdapat perubahan fasa mikroemulsi daripada fasa air-dalam-minyak (w/o) kepada fasa dwiselanjar pada peratusan air 20 wt. %. Mikroemulsi yang dihasilkan bagi keempat-empat sistem kekal jernih dan stabil selama tiga minggu pada peratusan air sehingga 30 wt. % pada suhu 4 °C, 25 °C dan 40 °C.

 

Kata kunci: mikroemulsi, karboksimetil selulosa, vitamin C, rajah fasa ternari

 

References

1.       Kogan, A. and Garti, N. (2006). Microemulsions as Transdermal Drug Delivery Vehicles. Advances in Colloid and Interface Science 123–126(0): 369-385.

2.       Chin, C. C. (2013). Sistem Penghantaran Minyak Tea Tree Secara Transdermal Berasaskan Mikroemulsi. Tesis Ijazah Sarjana Muda, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia.

3.       Stubenrauch, C. (2009). Microemulsions: Background, New Concepts, Applications, Perspectives. United Kingdom: Blackwell Publishing.

4.       Lawrence, M. J. and Rees, G. D. (2000). Microemulsion-Based Media as Novel Drug Delivery Systems. Advanced Drug Delivery Reviews 45(1): 89-121.

5.       Alexander, A., Dwivedi, S., Ajazuddin, Giri, T. K., Saraf, S., Saraf, S. and Tripathi, D. K. (2012). Approaches for Breaking the Barriers of Drug Permeation through Transdermal Drug Delivery. Journal of Controlled Release 164(1): 26-40.

6.       Hutomo, G. S., Marseno, D. W., Anggrahini, S. and Supriyanto. (2012). Synthesis and Characterization of Sodium Carboxymethylcellulose from Pod Husk of Cacao (Theobroma Cacao L.). African Journal of Food Science 6(6):     180-185.

7.       Bono, A., Ying, P., Yan, F., Muei, C., Sarbatly, R. and Krishnaiah, D. (2009). Synthesis and Characterization of Carboxymethyl Cellulose from Palm Kernel Cake. Advances in Natural & Applied Sciences 3(1).

8.       Rahman, A. F. A. (2006). Farmasi Dan Ubat-Ubatan. USM Pulau Pinang, Malaysia: Penerbit Universiti Sains Malaysia.

9.       Shokri, J. and Adibkia, K. (2013). Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries.

10.    Shapiro, S. S. and Saliou, C. (2001). Role of Vitamins in Skin Care. Nutrition 17(10): 839-844.

11.    Marta, S. (2005). The influence of ascorbic acid on the rheological properties of the microemulsion region of the SDS/pentanol/water system. Journal of Cosmetic Science 56: 267-277.

12.    Pushpamalar, V., Langford, S. J., Ahmad, M. and Lim, Y. Y. (2006). Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose from Sago Waste. Carbohydrate Polymers 64(2): 312-318.

13.    Toğrul, H. and Arslan, N. (2003). Production of Carboxymethyl Cellulose from Sugar Beet Pulp Cellulose and Rheological Behaviour of Carboxymethyl Cellulose. Carbohydrate Polymers 54(1): 73-82.

14.    Lawrence, M. J. and Rees, G. D. (2012). Microemulsion-Based Media as Novel Drug Delivery Systems. Advanced Drug Delivery Reviews 64, Supplement (0): 175-193.

15.    Herrera, J. R., Peralta, R. D., Lopez, R. G., Cesteros, L. C., Mendizabal, E. and Puig, J. E. (2003). Cosurfactant Effects on the Polymerization of Vinyl Acetate in Anionic Microemulsion Media. Polymer 44(6): 1795-1802.

16.    Constantinides, P. P. and Scalart, J.-P. (1997). Formulation and Physical Characterization of Water-in-Oil Microemulsions Containing Long- Versus Medium-Chain Glycerides. International Journal of Pharmaceutics 158(1): 57-68.

17.    Kantarci, G., Ozyguney, I., Karasulu, H. Y., Arzik, S. and Guneri, T.   (2007).   Comparision of different water/oil microemulsion containing diclofenac sodium: Preparation, characterization, release rate and skin irritation studies.  AAPS Pharmaceutical Science & Tecchnology  8(4): 91.

18.    Suria, R., Benjamin, P. R. and Gentle, I., R. G.   (2009).   Formulation and physical characterization of microemulsions containing isotretinoin.  International Conference on Biomedical and Pharmaceutical Engineering, ICBEP. 1-7.

19.    Metha, S. K., Dewan, R. K. and Bala, K.   (1994).   Percolation phenomenon and the study of conductivity, viscosity and ultrasonic velocity in microemulsion.  Physical Review E.  50: 4759-4762.

20.    Weigert, S., Eicke, H. F. and Meier, W.   (1997).   Electric conductivity near the percolation transition of a non-ionic water-in-oil microemulsion.  Physical A.  242: 95-103.

21.    Sripriya, R., Muthu Raja. K., Santhosh, G., Chandrasekaran, M. and Noel, M. (2007). The effect of structure of oil phase, surfactant and co-surfactant on the physicochemicals and electrochemical properties of bicontinuous microemulsion. Journal of Colloid and Interface Science 314: 712-717.

22.    Chen, C. M. and Warr, G. G.   (1992).   Rheology of ternary microemulsion.  Journal of Physical Chemistry  96: 9492-9497.

23.    Djodrjevic, L., Primorac, M., Stupar, M. and Krajisnik, D.   (2004).   Characterization of caprycaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug.  International Journal of Pharmacy 271: 11-19.

24.    Moulik, S. P. and Ray, S.   (1994).   Thermodynamics of clustering of droplets in water/AOT/heptanes microemulsion.  Pure Application of Chemistry  66: 521-525.

25.    Garti, N. and Aserin, A. (2006). Microemulsions for Solubilization and Delivery of Nutraceuticals and Drugs.         Taylor & Francais Group. 345-428.

26.    Bennet, K. E., Hatfield, J. C., Davis, H. T., W., M. C. and Seriven, L. E. (1982). Viscosity and Conductivity of Microemulsions. New York, Plenum Press: 65-84.

27.    Sun, W., Sun, D., Wei, Y. P., Liu, S. Y. and Zhang, S. Y. (2007). Oil-in-water emulsion stabilized by hydrophobically modified hydroxylehtyl cellulose: Adsorption and thickening effect. Journal of Colloid and Interfaces Science 311: 228-236.

28.    Aqualon, (1999). Sodium Carboxymethylcellulose: Physical and Chemical Properties. Hercules Inc.: USA. 5-7. Accesed from www. brenntagspecialties.com.

 

Previous                    Content                    Next