Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 31 – 40

 

 

 

MODIFICATION OF OIL PALM PLANTATION WASTES AS OIL ADSORBENT FOR PALM OIL MILL EFFLUENT (POME)

 

(Pengubahsuaian Sisa Kelapa Sawit Sebagai Bahan Penjerap Efluen Kilang Kelapa Sawit (POME))

 

Noraisah Jahi, Eng Siew Ling, Rizafizah Othaman, Suria Ramli*

 

School of Chemical Sciences and Food Technology,

Faculty of Sciences and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: su_ramli@ukm.edu.my

 

 

Abstract

This research was conducted to modify oil palm solid wastes chemically to become oil adsorbent for palm oil mill effluent (POME). The purpose of modification on oil palm leaves (OPL) and oil palm frond (OPF) was to change the hydrophilic nature to a more hydrophobic character. This study also exploited the production of sorbent materials with high efficiency in the oil uptake for POME from OPL and OPF. Chemical modification was carried out using 200 mL of 1.0 M lauric acid solution for 6 hrs at room temperature. The modified OPL and OPF were preceded to adsorption test for POME and the capacity of oil adsorbed was compared between them. FTIR analysis supported the modification to occur with the increase in a peak of C−H group and the presence of C=O originated from lauric acid structure chain. The hydrophobicity of modified OPL and OPF samples was supported by XRD and contact angle analysis with modified OPL became more hydrophobic than the modified OPF, which had been 38.15 % and 24.67% respectively. Both the analyses proved that the result from the oil adsorption test on POME showed the presence of a new peak attribute at C=C stretching of aromatics for the oil in POME proved that it was attached on the sorbent materials. Based on SEM analysis, the perforated and rough surface had been observed on modified OPL and OPF samples because oil layers on OPL and OPF surfaces were observed on the modified samples after the adsorption test. All the analyses in the study agreed that the results from oil adsorption test showed that the modified OPL had higher adsorption capacity than the modified OPF with the percentage of oil uptake at 83.74% and 39.84% respectively. The prepared adsorbent showed the potential to be used as a low-cost adsorbent in oil for POME.

 

Keywords: Oil palm plantation waste, palm oil mill effluent, chemical modification, adsorption material

 

Abstrak

Kajian ini adalah untuk mengubahsuai sisa pepejal kelapa sawit secara kimia untuk dijadikan sebagai bahan penjerap sisa minyak dari efluen kilang kelapa sawit (POME). Tujuan modifikasi ke atas OPL dan OPF untuk mengubah sifat hidrofilik kepada sifat yang lebih hidrofobik. Pembangunan bahan penjerap daripada OPL dan OPF yang mempunyai kecekapan menjerap minyak dengan kapasiti yang tinggi adalah tujuan kajian ini. Pengubahsuaian secara kimia menggunakan 200 mL 1.0 M larutan asid laurik dengan masa tindakbalas selama 6 jam pada keadaan suhu bilik. Sampel OPL dan OPF terubahsuai menjalani ujian serapan minyak ke atas POME dan kapasiti minyak yang diserap dibandingkan. Analisis FTIR menyokong bahawa sampel OPL dan OPF berjaya diubahsuai menggunakan asid laurik dengan kehadiran puncak kumpulan C−H dan C=O yang hadir dari rantai struktur asid laurik. Kehidrofobikan sampel OPL dan OPF terubahsuai disokong oleh analisis XRD dan sudut sentuhan dengan memberi keputusan sampel OPL terubahsuai adalah lebih hidrofobik berbanding dengan sampel OPF terubahsuai dengan nilai masing-masing ialah 38.15% dan 24.67%. Kedua-dua analisis membuktikan keputusan ujian serapan miyak ke atas POME menunjukkan kehadiran kumpulan regangan C=C daripada minyak yang terjerap pada sampel OPL dan OPF terubahsuai. Keputusan analisis SEM juga memberi keputusan bahawa permukaan sampel OPL dan OPF terubahsuai kelihatan berliang dan kasar berbanding dengan sampel OPL dan OPF tidak terubahsuai kelihatan mempunyai permukaan yang lebih licin kerana terdapat lapisan minyak yang menyelaputi permukaan sampel OPL dan OPF. Semua analisis yang dikaji adalah sejajar dengan keputusan yang diperoleh daripada ujian serapan minyak mendapati sampel OPL terubahsuai mempunyai kapasiti penjerapan yang lebih tinggi berbanding sampel OPF terubahsuai dengan peratus minyak yang terserap masing-masing ialah 83.74% dan 39.84%. Kajian ini juga memastikan penghasilan bahan penjerap yang murah untuk aplikasi menyingkirkan minyak dalam POME.

 

Kata kunci: Sisa pepejal kelapa sawit, sisa efluen kilang kelapa sawit, pengubahsuaian kimia, bahan penjerap

 

References

1.       Rosalina Tan, R., Mohamed, S., Samaneh, G., Noordin, M., Goh, Y.  and Manap, M.   (2011).   Polyphenol rich oil palm leaves extract reduce hyperglycaemia and lipid oxidation in STZ-rats.  International Food Research Journal  18(1):

2.       Ariffin, H., Hassan, M. A., Shah, U. K. M., Abdullah, N., Ghazali, F. M. and Shirai, Y.   (2008).   Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by< i> bacillus pumilus</i> EB3.  Journal of bioscience and bioengineering  106(3): 231-236

3.       Sumathi, S., Chai, S. and Mohamed, A.   (2008).   Utilization of Oil Palm as a Source of Renewable Energy in Malaysia.  Renewable and Sustainable Energy Reviews  12(9): 2404-2421.

4.       Ahmad, A., Sumathi, S. and Hameed, B.   (2005a).   Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies.  Water research  39(12): 2483-2494.

5.       Ngarmkam, W., Sirisathitkul, C. and Phalakornkule, C.   (2011).   Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME.  Journal of Environmental Management  92(3): 472-479.

6.       Ahmad, A., Sumathi, S. and Hameed, B.   (2005b).   Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: A comparative study.  Chemical Engineering Journal  108(1): 179-185.

7.       Ahmad, A., Sumathi, S. and Hameed, B.   (2006).   Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC.  Chemical Engineering Journal  118(1): 99-105.

8.       Anon.   (2012).   Technical Information Paper.  Impact PR & Design Limited, Canterbury  1-12.

9.       Wan Ngah, W. and Hanafiah, M. a. K. M.   (2008).   Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review.  Bioresource technology  99(10): 3935-3948.

10.    Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E. and Anastopoulos, G.   (2001).   Investigation of the Effectiveness of Absorbent Materials in Oil Spills Clean Up.  Desalination  140(3): 259-264.

11.    Marín, A., Ortuño, J., Aguilar, M., Meseguer, V., Saez, J. and Lloréns, M.   (2010).   Use of Chemical Modification to Determine the Binding of Cd (II), Zn (II) and Cr (III) Ions by Orange Waste.  Biochemical Engineering Journal  53(1): 2-6.

12.    Yang, H., Yan, R., Chen, H., Lee, D. H. and  Zheng, C.   (2007).   Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis.  Fuel  86(12): 1781-1788.

13.    Pandey, K. and Pitman, A.   (2003).   Ftir Studies of the Changes in Wood Chemistry Following Decay by Brown-Rot and White-Rot Fungi.  International Biodeterioration & Biodegradation  52(3): 151-160.

14.    Sidik, S., Jalil, A., Triwahyono, S., Adam, S., Satar, M. and Hameed, B.   (2012).   Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal.  Chemical Engineering Journal  203(9-18.

15.    Wang, L., Han, G. and Zhang, Y.  ( 2007).   Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments.  Carbohydrate polymers  69(2): 391-397.

16.    Hashim, R., Nadhari, W. N. a. W., Sulaiman, O., Kawamura, F., Hiziroglu, S., Sato, M., Sugimoto, T., Seng, T. G. and Tanaka, R.   (2011).   Characterization of raw materials and manufactured binderless particleboard from oil palm biomass.  Materials & Design  32(1): 246-254.

17.    Gan, P. P., Ng, S. H., Huang, Y. and Li, S. F. Y.   (2012).   Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach.  Bioresource technology  113(132-135.

18.    Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F. and Yano, H.   (2007).   Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS.  Biomacromolecules  8(6): 1973-1978.

19.    Nazir, M. S., Wahjoedi, B. A., Yussof, A. W. and Abdullah, M. A.   (2013).   Eco-Friendly Extraction and Characterization of Cellulose from Oil Palm Empty Fruit Bunches.  BioResources  8(2): 2161-2172.

20.    Anon.   2009.   Contact Angle.

21.    Jonoobi, M., Harun, J., Mathew, A. P., Hussein, M. Z. B. and Oksman, K.   (2010).   Preparation of cellulose nanofibers with hydrophobic surface characteristics.  Cellulose  17(2): 299-307.

22.    Cunha, A. G., Freire, C. S., Silvestre, A. J., Neto, C. P. and Gandini, A.   (2006).   Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation.  Journal of colloid and interface science  301(1): 333-336.

23.    Wahi, R., Ngaini, Z. and Jok, V. U.   (2009).   Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch.  World Appl Sci J  5:84 -91.

24.    Pérez, J., Munoz-Dorado, J., De La Rubia, T. and Martinez, J.   (2002).   Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.  International Microbiology  5(2): 53-63.

25.    Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E. and Anastopoulos, G.   (2001).   Investigation of the Effectiveness of Absorbent Materials in Oil Spills Clean Up.  Desalination  140(3): 259-264.

26.    Marín, A., Ortuño, J., Aguilar, M., Meseguer, V., Saez, J. and Lloréns, M.   (2010).   Use of Chemical Modification to Determine the Binding of Cd (Ii), Zn (Ii) and Cr (Iii) Ions by Orange Waste.  Biochemical Engineering Journal  53(1): 2-6.

27.    Yang, H., Yan, R., Chen, H., Lee, D. H. and Zheng, C. (2007). Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis.  Fuel  86(12): 1781-1788.

 

Previous                    Content                    Next