Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 46 – 54

 

 

 

ANALYTICAL APPROACHES OF DETERMINING MONOSACCHARIDES FROM ALKALINE-TREATED PALM FIBER

 

(Kaedah Analatikal bagi Penentuan Monosakarida daripada Serabut Sawit Terawat Alkali)

 

Khairiah Haji Badri1,2*, Cheah Ai Juan1, Osman Hassan1,2,  Wan Aida Wan Mustapha1

 

1School of Chemical Sciences and Food Technology

2Polymer Research Center

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: kaybadri@ukm.edu.my

 

 

Abstract

Monosaccharides in oil palm empty fruit bunch fiber (EFB) were determined by methanolysis and acetylation. Three types of EFB samples, namely untreated EFB, EFB pretreated with hot water and EFB pretreated with hot water followed by 10% (w/w) sodium hydroxide (NaOH) aqueous solution were used. The FTIR spectrum indicated the disappearance and shifting of aromatic and carbonyl functional groups, syringyl propane unit, guaisacyl propane unit and C-H lignin. The filter cake undergone methanolysis and alditol acetate treatments to detect the composition of reducing sugars. Gas chromatography flame ionization detector (GC-FID) analysis was conducted to determine the type and quantity of reducing sugars produced. Acetylation produced two types of monosaccharides namely glucose and galactose whereas methanolysis detected only one type of monosaccharide, which was xylose. The extracted monosaccharides obtained from hot water pretreatment followed by 10 % (w/w) NaOH aqueous solution treatment analysed by methanolysis and acetylation were 178.4 mg/g xylose and 29.9 mg/g glucose respectively. About 0.76 mg/g xylose was extracted from hot water pretreated EFB fiber by methanolysis. Acetylation detected monosaccharides in untreated EFB and identified as glucose with the amount of 19.15 mg/g, whereas monosaccharides from hot water pretreated EFB fiber were identified as glucose and galactose at 6.32 mg/g and 2.83 mg/g respectively.

 

Keywords: acetylation, alditol acetate, empty fruit bunch fiber, methanolysis, monosaccharides

 

Abstrak

Monosakarida di dalam serabut tandan kosong sawit (EFB) ditentukan melalui metanolisis dan pengasetilan. Tiga jenis EFB digunakan iaitu EFB tanpa rawatan, EFB prarawat air panas dan EFB prarawat air panas diikuti 10% (w/w) larutan akueus natrium hidroksida (NaOH). Spektrum FTIR menunjukkan kehilangan dan anjakan kumpulan berfungsi aromatik dan karbonil, Spektrum FTIR menunjukkan kehilangan dan anjakan nombor gelombang bagi puncak gelang aromatik, karbonil, unit siringil propana dan unit guaisasil propana dan C-H lignin. Kek turasan menjalani metanolisis dan pengasetilan untuk memperoleh gula terturun. Kromatografi gas pengesan nyalaan ion (GC-FID) digunakan untuk menentukan jenis dan kuantiti gula terturun yang dihasilkan. Analisis pengasetilan mengenalpasti dua jenis monosakarida iaitu glukosa dan galaktosa, manakala metanolisis hanya xilosa. Monosakarida terekstrak daripada serabut EFB terawat air panas diikuti larutan akues NaOH 10 % (w/w) yang diperoleh daripada analisis metanolisis dan pengasetilan masing-masing adalah 178.4 mg/g xilosa dan 29.9 mg/g glukosa. Sebanyak 0.76 mg/g xilosa ditentukan daripada EFB prarawat air panas melalui metanolisis. Pengasetilan menunjukkan monosakarida yang ditentukan di dalam EFB tanpa rawatan ialah glukosa dengan amaun 19.15 mg/g manakala EFB prarawat air panas mengandungi glukosa dan galaktosa masing-masing 6.32 mg/g dan 2.83 mg/g.

 

Kata kunci: pengasetilan. alditol asetat, tandan kosong sawit, metanolisis, monosakarida

 

References

1.       Abdullah, N. and Sulaiman, F. Chapter 3: The oil palm wastes in Malaysia.  Matovic, M.D. 2013. Eds. Biomass Now -Sustainable Growth and Use, ISBN 978-953-51-1105-4978-953-51-0726-2, New York: InTech Publication

2.       Hon, D. N. and Shiraishi, N. (1991). Wood and Cellulosic Chemistry.   New York, United State of America: Marcel Dekker, INC.

3.       Wyman, C. E., Decker, S. R., Himmel, M. E., Brady, J. W., Skopec, C. E. and Viikari, L. (2005).  Hydrolysis of Cellulose and Hemicellulose.  Polysaccharides: Structural Diversity and Functional Versatility, 43(1):1023-1062.

4.       Pessoa Jr, A., Mancilha, I. and Sato, S. (1997). Acid Hydrolysis of Hemicellulose from Sugarcane Bagasse.  Brazilian Journal of Chemical Engineering, 14(3): 291-297.

5.       Sjöström, E. and Alen, R. (1999). Analytical Methods in Wood Chemistry, Pulping and Papermaking. Germany: Springer.

6.       Steve, C. (2005). Structural Analysis of Polysaccharides. United States of America: CRC Press Taylor & Francis Group.

7.       Belitz, H. D., Grosch, W. and Schieberle, P. (2004). Food Chemistry.  3.  German: Springer Verlag Berlin Heidelberg.

8.       Bertaud, F., Sundberg, A. and Holmbom, B. (2002). Evaluation of Acid Methanolysis for Analysis of Wood Hemicelluloses and Pectins.  Carbohydrate Polymers, 48(3): 319-324.

9.       Kamerling, J. P. & Gerwig, G. J.   (2007).   2.01 - Strategies for the Structural Analysis of Carbohydrates.  Dlm.  Editor-in-Chief:  johannis, P. K. (pnyt.).   Comprehensive Glycoscience,  pp 1-68. Oxford: Elsevier.

10.    Anthony B. Blakaney, Philip J. Harris and Stone, R. J. H. a. B. A. (1982). A Simple and Rapid Preparation of Alditol Acetates for Monosaccharide Analysis.  Carbohydrate Research, 113(3):291-299.

11.    Hasegawa, I., Kazuhide Okuma, Osamu Mae, Kazuhiro. (2004). New Pretreatment Methods Combining a Hot Water Treatment and Water/Acetone Extraction for Thermo-Chemical Conversion of Biomass. Energy & Fuels,  18(3): 755-760.

12.    Sun, Y. C., and Jiayang. (2002). Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresource Technology, 83(1): 1-11.

13.    Chambers R.E and J.R., C. (1971). An Assessment of Methanolysis and Other Factors Used in the Analysis of Carbohydrate-Containing Materials.  Biochemical Journal, 125(4): 1009-1018.

14.    Davison, P. and Young, R. (1964). Gas Chromatography of Carbohydrates the Quantitative Determination of the Free Sugars of Plants as Their Trimethylsilyl Ethers.  Journal of Chromatography A, 41(4): 12-21.

15.    Sun, X. F., Xu, F., Sun, R. C., Fowler, P. and Baird, M. S. (2005). Characteristics of Degraded Cellulose Obtained from Steam-Exploded Wheat Straw.  Carbohydrate Research, 340(1): 97-106.

16.    Mingjia, Z., Wei, Q., Rui, L., Rongxin, S., Shaomin, W. and Zhimin, H. (2010).   Fractionating Lignocellulose by Formic Acid: Characterization of Major Components.  Biomass and Bioenergy, 34(4): 525-532.

17.    Evtuguin, D. V., Neto, C. P., Silva, A. M., Domingues, P. M., Amado, F. M., Robert, D. and Faix, O. (2001). Comprehensive Study on the Chemical Structure of Dioxane Lignin from Plantation Eucalyptus Globulus Wood. Journal of Agricultural and Food Chemistry, 49(9): 4252-4261.

18.    Jahan, M. S. and Mun, S. P. (2007). Characteristics of Dioxane Lignins Isolated at Different Ages of Nalita Wood (Trema Orientalis).  Journal of Wood Chemistry and Technology, 27(2): 83-98.

19.    Alemdar, A. and Sain, M. (2008). Isolation and Characterization of Nanofibers from Agricultural Residues–Wheat Straw and Soy Hulls. Bioresource technology, 99(6): 1664-1671.

20.    Rahman, S., Choudhury, J. and Ahmad, A. (2006). Production of Xylose from Oil Palm Empty Fruit Bunch Fiber Using Sulfuric Acid.  Biochemical Engineering Journal, 30(1): 97-103

21.    Dungait, J. a. J., Docherty, G., Straker, V. and Evershed, R. P. (2008).   Interspecific Variation in Bulk Tissue, Fatty Acid and Monosaccharide Δ13c Values of Leaves from a Mesotrophic Grassland Plant Community.  Phytochemistry, 69(10): 2041-2051.

22.    Fatin Afifah binti Ahmad Kuthi. (2012). Penentuan Gula Terturun Daripada Tandan Kosong Kelapa Sawit Melalui Prarawatan Air Panas Oleh Hidrolisis Berasid.   Tesis Ijazah Sarjanamuda Sains Dengan Kepujian,  Fakulti Sains Dan Teknologi,  Universiti Kebangsaan Malaysia.

23.    Hamzah, F., Idris, A. and Shuan, T. K. (2011). Preliminary Study on Enzymatic Hydrolysis of Treated Oil Palm (Elaeis) Empty Fruit Bunches Fibre (Efb) by Using Combination of Cellulase and Β 1-4 Glucosidase. Biomass and Bioenergy,   35(3): 1055-1059.

 

Previous                    Content                    Next