Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 55 – 64

 

 

 

GYLCEROL CONVERSION OVER NOVEL FLUORINE-DOPED TIN OXIDE SUPPORTED CATALYST: EFFECT OF METAL LOADINGS AND GLYCEROL CONCENTRATION

 

(Penukaran Gliserol Menggunakan Timah Oksida Terdop Florin sebagai Bahan Sokongan Mangkin: Kajian Kesan Muatan Logam dan Kepekatan Gliserol)

 

Wan Zurina Samad1,2, Wan Nor Roslam Wan Isahak1, Norazzizi Nordin1, Mohd Ambar Yarmo1,

Muhammad Rahimi Yusop1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Department of Chemistry, Kulliyah of Science,

International Islamic University Malaysia,

Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: rahimi@ukm.edu.my

 

 

Abstract

The catalytic activity of glycerol conversion to value-added chemicals was attempted using novel fluorine-doped tin oxide (FTO) as support material with ruthenium metal. The effect of metal loadings and glycerol concentration were investigated. Glycerol hydrogenolysis is generally done using a parr reactor with the presence of hydrogen gas. Furthermore, the reaction was carried out under a mild condition (150oC, 8 hours, and 20 bar of hydrogen pressure). A series of metal loading of (1.5, 3.0, 4.5, 7.5, 9.0, and 11%) were prepared to observe the activity of glycerol conversion and selectivity of 1,2-propanediol as a major product. Meanwhile, glycerol concentrations at (20, 40, 60, and 80 wt%) were proceed to determine the capability of Ru/FTO catalyst to convert glycerol at lower and higher concentration. At the optimized results, metal loading of 7.5% give a better glycerol conversion (99%) and selectivity of 1,2-PDO at 94%. Meanwhile, Ru/FTO catalyst was observed to stabilize the highest glycerol conversion at average mean of 87% for every glycerol concentration.

 

Keywords:  fluorine-doped tin oxide (FTO), glycerol hydrogenolysis, 1,2-Propanediol, metal loadings, heterogeneous catalyst

 

Abstrak

Aktiviti mangkin untuk penukaran gliserol kepada bahan kimia bernilai tinggi telah menggunakan timah oksida didopkan florin (FTO) sebagai bahan sokongan dengan logam rutenium. Kesan muatan logam dan kepekatan gliserol telah dikaji. Hidrogenolisis gliserol biasanya dilakukan dengan menggunakan reaktor tekanan (Parr) dengan kehadiran gas hidrogen. Tambahan pula, tindak balas ini dilakukan dengan parameter yang mudah iaitu (pada suhu 150oC, 8 jam, dan 20 bar tekanan gas hidrogen). Satu siri muatan logam (1.5, 3.0, 4.5, 7.5, 9.0, dan 11%) telah disediakan untuk melihat kesan ke atas aktiviti penukaran gliserol dan kepilihan 1,2-propanadiol sebagai produk utama. Sementara itu, kepekatan gliserol pada (20, 40, 60, dan 80% berat) telah digunakan untuk menentukan keupayaan Ru/FTO sebagai mangkin untuk menukarkan gliserol. Analisis optimum yang diperolehi menyatakan, muatan logam sebanyak 7.5% memberikan penukaran gliserol yang lebih baik (99%) dan kepilihan 1,2-PDO pada 94%. Sementara itu, mangkin Ru/FTO diperhatikan boleh menstabilkan penukaran gliserol tertinggi iaitu dalam julat purata sebanyak 87% bagi setiap kepekatan gliserol.

 

Kata kunci:  timah oksida terdop florin (FTO), gliserol hidrogenolisis, 1,2-Propanadiol, muatan logam, mangkin heterogen

 

References

1.       Nakagawa, Y., Tomishige, K. (2011). Heterogeneous catalysis of the  glycerol hydrogenolysis. Catal. Sci. Technol, 1: 179 – 190.

2.       Werpy, T., and Peterson, G. (2004). Top value added chemicals from biomass. Volume I- results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy

3.       Bharat, N. C., and Raju, K. M. (2013). Development of Rate Expression for Glycerol Hydrogenation Reaction. Procedia Engineering, 51: 443-450.

4.       Liu, L., Zhang, Y., Wang, A., and Zhang, T. (2012). Mesoporous WO3 Supported Pt Catalyst for Hydrogenolysis of Glycerol to 1,3-Propanediol. Chinese Journal of Catalysis. 33 (8): 1257-1261.

5.       Noraini, H., Norasikin, M. N., Ainol, H. A. N., Yah, A. N., Mohamad, B. K., and Mohd, A. Y. (2012). Enhanced Activity of Ru/TiO2 Catalyst Using Bisupport, Bentonite-TiO2 for Hydrogenolysis of Glycerol in Aqueous Media. Applied Ctalaysis A : General, 419-420: 133-141.

6.       Zhijie, W., Yuzhen, M., Meng, S., Xiaoqian, Y., and Minghui, Z. (2013). Cu/boehmite: A Highly Active Catalyst for Hydrogenolysis of Glycerol to 1,2-Propanediol. Catalysis Communications, 32: 52-57.

7.       Xinguo, C., Xicheng, W., Shengxi, Y., and Xindong, M. (2013). Hydrogenolysis of Biomass-Derived Sorbitol to Glycols and Glycerol Over Ni-MgO Catalyst. Catalysis Communication, 39: 86-89.

8.       Hu, J., Liu, X., Wang, B., Pei, Y., Qiao, M., Fan, K. (2012). Reforming and Hydrogenolysis of Glycerol Over Ni/ZnO Catalysts Prepared by Different Methods. Chin. J. Catal, 33 (8): 1266-1275.

9.       Huang, J., and Chen, J. (2012). Comparison of Ni2P/SiO2 and Ni/SiO2 for Hydrogenolysis of Glycerol: A Consideration of Factors Influencing Catalyst Activity and Product Selectivity. Chin. J. Catal, 33 (5): 790-796.

10.    Montassier, C., Menezo, J. C., Hoang, L. C., Renaud, C., and Brabier, J. (1991). Aqueous Polyol Conversion on Ruthenium and on Sulfur-Modified Ruthenium. J. Mol. Catal. 70: 99 – 110.

11.    Vasiliadou, E. S., and Lemonidou, A. A. (2013). Kinetic Study of Liquid-Phase Glycerol Hydrogenolysis Over Cu/SiO2 Catalyst. Chemical Engineering Journal. 231: 103-112.   

12.    Wang, S., and Liu, H. C. (2007). Selective Hydrogenolysis of Glycerol to Propylene Glycol on Cu/ZnO Catalyst. Catalysis Letters, 117(1-2): 62-67.

13.    Ma. L., He, D., and Li, Z. (2008). Promoting Effect of Rhenium on Catalytic Performance of Ru Catalysts in Hydrogenolysis of Glycerol to Propanediol. Catalysis Communications, 9: 2489-2495.

14.    Samad, W. Z., M. M. Salleh, A. Shafiee, M. A. Yarmo. (2011). Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malaysiana, 40(3): 251 – 257.

 

Previous                    Content                    Next