Malaysian Journal of Analytical Sciences Vol 19 No 2 (2015): 369 – 376

 

 

 

BIOMIMETIC SYNTHESIS OF SILVER NANOPARTICLES USING THE LICHEN Ramalina dumeticola AND THE ANTIBACTERIAL ACTIVITY

 

(Sintesis Biomimetik Nanozarah Perak Menggunakan Liken Ramalina dumeticola dan Aktiviti Antibakteria)

 

Laily B Din1*, Ropisah Mie1,3, Mohd Wahid Samsudin1, Azizan Ahmad1, Nazlina Ibrahim2

 

1School of Chemical Sciences and Food Technology,

2School of Biosciences and Biotechnology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Faculty of Applied Sciences,

Universiti Teknologi MARA, Negeri Sembilan Branch,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: lbdin@ukm.edu.my

 

 

Received: 6 January 2015; Accepted: 10 February 2015

 

 

Abstract

Silver nanoparticles (AgNPs) has been successfully synthesized by reduction of silver nitrate with an aqueous extract of the lichen Ramalina dumeticola. The aqueous extract of Ramalina dumeticola was treated with 45 mL of 1 mM silver nitrate at room temperature (24-25 °C) for 24 hours. The ultraviolet-visible (UV-Vis) absorption spectroscopy has been used to monitor the formation of AgNPs. Physical appearance of AgNPs characterized by transmission electron microscopy (TEM) showed formation of AgNPs with average particle size of 13 nm. X-ray diffraction (XRD) techniques displayed the AgNPs as cubic structure. The UV-Vis absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at approximately 433 nm. The in vitro antibacterial activity of the synthesized AgNPs was investigated against eight bacterial strains using a disc diffusion method and it’s showed inhibition against all of them. The results revealed that the above AgNPs have potential as antibacterial agent.

 

Keywords: lichen extract, Ramalina dumeticola, silver nanoparticles, antibacterial activity

 

Abstrak

Nanozarah perak (NZAg) berjaya disintesis melalui penurunan argentum nitrat dengan ekstrak akueus liken Ramalina dumeticola. Ekstrak akueus Ramalina dumeticola diolah dengan 45 mL larutan argentum nitrat 1 mM pada suhu bilik (24-25 °C) selama 24 jam. Spektroskopi penyerapan ultraungu-boleh nampak (UU-BN) digunakan untuk mengawasi pembentukan NZAg. Penampakan fizikal NZAg dicirikan dengan mikroskopi transmisi elektron (MTE) yang menunjukkan pembentukan NZAg pada saiz zarah purata 13 nm. Teknik pembelauan sinar-X (PSX) memperlihatkan NZAg sebagai struktur kubik. Hasil spekroskopi penyerapan UU-BN menunjukkan resonans kuat yang berpusat pada permukaan NZAg pada kira-kira 433 nm. Aktiviti antibakteria in-vitro NZAg yang disintesis disiasat melawan lapan strain bakteria menggunakan kaedah peresapan cakera dan ia menunjukkan perencatan terhadap kesemuanya. Hasil ini mendedahkan bahawa NZAg di atas mempunyai potensi sebagai agen antibakteria.

 

Kata kunci: ekstrak liken, Ramalina dumeticola, nanozarah perak, aktiviti antibakteria

 

References

1.       Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Deepak, V., Pandian, S. R. K. & Muniyandi, J. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B, 74: 328-335.

2.       Parashar, V., Parashar, R., Sharma, B. & Pandey, A.C. (2009). Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest Journal of Nanomaterials & Biostructures, 4: 45-50.

3.       Rai, M., Yadav, A. & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Advances, 27: 76-83.

4.       Kim, J. S., Kuk, E., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3: 95-101.

5.       Suman, T.Y., Rajasree, S.R.R., Kanchana, A. & Elezabeth, S.B. (2013). Biosynthesis, characterization and cytotoxic effect of plant plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces B: Biointerfaces, 106: 74-78. 

6.       Fahlman, Ds. (2007). Material Chemistry. Springer  

7.       Deepika, H., Jacob, L., Mallikarjuna, Nadagouda, N. & Varma, R.S. (2013) Greener technique for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers and Microwaves. Sustainable Chemistry & Engineering, 1(7): 703-712.  

8.       Rad, M.S., Rad, J.S., Gholam, A.H., Abdolhossein, M. & Dhrubo, J.S. (2013) Biological synthesis of gold and silver nanoparticles by Nitraria schoberi fruits. American Journal of Advanced Drug Delivery, 2: 174-179.

9.       Johnson, I. & Prabu, H.J. (2015). Green synthesis and characterization of silver nanopaerticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commellina benghalensis and Lippia nodiflora. International Nano Letter, 5: 43-51.

10.    Jain, D., Daima, H. K., Kachhwaha, S. & Kothari, S. L. (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructure, 4(3): 557-563.

11.    Cruz, D., Fale, P. L., Mourato, A., Vaz, P. D., Serralheiro, M. L. & Lino, A. R. L. (2010). Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids and Surfaces B: Biointerfaces, 81: 67-73.

12.    Kora, A.J., Sashidar, R.B. & Arunachalam, J. (2012). Aqueous extract of gum olibanum (Boswellia serrata) : A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochemistry, 47: 1516-1520.

13.    Rodriguez-Leon, E., Iniguez-Palomares, R., Navarro, R.E, Herrera-Urbina, R., Tanori, J., Iniguez-Palomares, C. & Maldonado, A. (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Research Letters, 8: 318-326.

14.    Mie, R., Samsudin, M. W., Din, L. B., Ahmad, A., Ibrahim, N. & Adnan, S. N. A. (2014). Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. International Journal of Nanomedicine, 9: 121-127.

15.    Chandran, N., Padmanaban, S. & Sahadevan, R. (2012). International Journal of Nanomaterials and Biostructures, 2(2): 16-21.

16.    Clinical and Laboratory Standards Institute. (2006) M7-A7, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - seventh edition. Wayne, PA: CLSI.

17.    Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T. & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B, 76: 50-56.

18.    Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Islam, K. M. & Kumar, R. (2003). Extracellular Biosynthesis of Silver Nanoparticles using the Fungus Fusarium Oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4): 313-318.

19.    Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. & Sastry, M. (2004). Biological Synthesis of Triangular Gold Nanoprisms. Nature Materials, 3: 482-488.

20.    Mulvaney, P. (1996). Surface palsmon spectroscopy of nanosized metal particles. Langmuir 12: 788-800.

21.    Kerker, M. (1985). The optics of colloidal silver: something old and something new. J Colloid Interface Sci, 105: 297-314.

22.    Henglein, A. (1993). Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem.  97: 5457-5471.

23.    Sastry, M., Mayya, K. S. & Bandyopadhyay, K. (1997). pH-dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloid Surf A, 127: 221-228.

24.    Sastry, M., Patil, V. & Sainkar, S. R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B, 102: 1404-1410.

25.    Gilaki, M. (2010). Biosynthesis of silver nanoparticles using plant extracts. Journal of Biological Science, 10(5): 465-467.

26.    Panneerselvam, C., Ponarulselvam, S., Murugan, K., Kalimuthu, K. & Thangamani, S. (2102). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed, 7: 574-580.

27.    Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs).  J Phys Chem C, 112: 5825-5834.

28.    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. & Ramirez, J. T. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 2347-2353.

 

Previous                    Content                    Next