Malaysian Journal of Analytical Sciences Vol 19 No 2 (2015): 416 – 427

 

 

 

SOLID STATE SELF-HEALING SYSTEM: EFFECTS OF USING IMMISCIBLE HEALING AGENTS

 

(Sistem Swa-pemulihan Keadaan Pepejal: Kesan Menggunakan Agen Pemulihan Tidak Larut)

 

Noor Nabilah Muhamad and Mohd Suzeren Mohd Jamil*

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: suzeren@ukm.edu.my

 

 

Received: 8 December 2014; Accepted: 14 January 2015

 

 

Abstract

The solid state self-healing system was obtained by employs a thermosetting epoxy resin, into which a thermoplastic is dissolved. The aim of this study is to identify the effect of using immiscible healing agents, which are polyvinyl chloride and polyvinyl alcohol, on solid state self-healing system. Healing was achieved by heating the fractured resins to a specific temperature; above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) in order for thermal expansion to occur. The thermal properties and bonding formed in the epoxy resins were characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). Izod impact test was performed in preliminary work. Further work then has been done using compact tension test to demonstrate details self-healing capability of the different specimens. Under compact tension test, it was found that healable resin with PVC has highest healing efficiency followed PVA with 7.4% and 3% of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. Morphological studies using microscope optic prove the fracture-healing process and morphological properties of the resins.

 

Keywords: solid state self-healing; healing effieciency; compact tension test; impact test

 

Abstrak

Sistem swa-pemulihan keadaan pepejal disediakan dengan melarutkan polimer termoplastik dalam resin epoksi termoset. Tujuan kajian ini dijalankan adalah untuk mengenalpasti kesan menggunakan agen pemulihan tidak larut, iaitu polivinil klorida dan polivinil alkohol, ke atas sistem swa-pemulihan keadaan pepejal. Pemulihan telah dicapai dengan memanaskan resin yang telah patah atau retak pada suhu spesifik, iaitu di atas suhu peralihan kaca (Tg) yang diperoleh dari analisis mekanikal dinamik (DMA) bagi membolehkan pengembangan terma berlaku. Sifat terma dan ikatan yang terbentuk dalam resin epoksi dicirikan menggunakan Spektroskopi Inframerah Transformasi (FTIR). Ujian impak Izod telah dijalankan dalam kerja permulaan. Ujian tekanan padat telah seterusnya dijalankan bagi mengkaji kebolehan swa-pemulihan specimen yang berbeza dengan lebih terperinci. Hasil daripada ujian tekanan padat, resin pemulihan dengan agen pemulihan PVC menunjukkan keberkesanan pemulihan yang tertinggi diikuti dengan agen pemulihan PVA, dengan masing-masing memiliki purata peratusan keberkesanan pemulihan 7.4% dan 3%. Keadaan ini adalah disebabkan oleh perbezaan parameter kelarutan polimer termoset dan termoplastik yang membawa kepada pemisahan fasa. Pencirian morfologi menggunakan mikroskop optik membuktikan proses patah-pulih dan sifat morfologi resin.  

 

Kata kunci: Swa-pemulihan keadaan pepejal; keberkesanan pemulihan; ujian tekanan padat; ujian impak

 

References

1.       Pang, J. W. C. & Bond, I. P. (2005). ‘Bleeding composites’—damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, 36 (2): 183-188.

2.       Wu, D. Y., Meure, S., & Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33 (5): 479-522.

3.       Astrom, B. T., Manufacturing of polymer composites. 1997: CRC Press.

4.       Charalambides, M., Hardouin, R., Kinloch, A., & Matthews, F. (1998). Adhesively-bonded repairs to fibre-composite materials I. Experimental. Composites Part A: Applied Science and Manufacturing, 29 (11): 1371-1381.

5.       Jud, K., Kausch, H. H., & Williams, J. G. (1981). Fracture mechanics studies of crack healing and welding of polymers. Journal of Materials Science, 16 (1): 204-210.

6.       Trask, R. S., Williams, H. R., & Bond, I. P. (2007). Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration & Biomimetics, 2 (1): 1-12.

7.       Kalista, S. J. & Ward, T. C. (2007). Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. Journal of The Royal Society Interface, 4 (13): 405-411.

8.       Murphy, E. B. & Wudl, F. (2010). The world of smart healable materials. Progress in Polymer Science, 35 (1–2): 223-251.

9.       Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., & White, S. R. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40.

10.    Hou, L. & Hayes, S. (2002). A resistance-based damage location sensor for carbon-fibre composites. Smart Materials and Structures, 11 (6): 966.

11.    Hayes, S. A. & Jones, F. R., Self healing composite materials, in UK Patent Application 2004.

12.    Hayes, S. A., Zhang, W., Branthwaite, M., & Jones, F. R. (2007 b). Self-healing of damage in fibre-reinforced polymer-matrix composites. Journal of The Royal Society Interface, 4 (13): 381-387.

13.    Hayes, S. A., Jones, F. R., Marshiya, K., & Zhang, W. (2007 a). A self-healing thermosetting composite material. Composites Part A: Applied Science and Manufacturing, 38 (4): 1116-1120.

14.    Meure, S., Varley, R. J., Wu, D. Y., Mayo, S., Nairn, K., & Furman, S. (2012). Confirmation of the healing mechanism in a mendable EMAA–epoxy resin. European Polymer Journal, 48 (3): 524-531.

15.    Meure, S., Wu, D. Y., & Furman, S. (2009). Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins. Acta Materialia, 57 (14): 4312-4320.

16.    Hoy, K. (1970). New values of the solubility parameters from vapor pressure data. Journal of Paint Technology, 42 (541): 76-118.

17.    Chen, X., Dam, M. A., Ono, K., Mal, A., Shen, H., Nutt, S. R., Sheran, K., & Wudl, F. (2002). A Thermally Re-mendable Cross-Linked Polymeric Material. Science, 295 (5560): 1698-1702.

18.    Hayes, B. S. & Seferis, J. C. (2001). Modification of thermosetting resins and composites through preformed polymer particles: A review. Polymer Composites, 22 (4): 451-467.

19.    González, M. G., Cabanelas, J. C., & Baselga, J. (2012). Applications of FTIR on Epoxy Resins–Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. Infrared Spectroscopy–Materials Science, Engineering and Technology.

20.    Rahmathullah, M. A. M. & Palmese, G. R. (2009). Crack-healing behavior of epoxy–amine thermosets. Journal of applied polymer science, 113 (4): 2191-2201.

21.    Fraga, F., Castro-Dı́az, C., Rodrı́guez-Núñez, E., & Martı́nez-Ageitos, J. M. (2003). Physical aging for an epoxy network diglycidyl ether of bisphenol A/m-xylylenediamine. Polymer, 44 (19): 5779-5784.

22.    Marouani, S., Curtil, L., & Hamelin, P. (2012). Ageing of carbon/epoxy and carbon/vinylester composites used in the reinforcement and/or the repair of civil engineering structures. Composites Part B: Engineering, 43 (4): 2020-2030.

23.    Demčenko, A., Koissin, V., & Korneev, V. A. (2014). Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure. Ultrasonics, 54 (2): 684-693.

24.    Wool, R. P. (2008). Self-healing materials: a review. Soft Matter, 4 (3): 400-418.

25.    Luo, X., Ou, R., Eberly, D. E., Singhal, A., Viratyaporn, W., & Mather, P. T. ( 2009). A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. Applied Materials and Intefaces, 1 (3): 612-620.

 

Previous                    Content                    Next