Malaysian Journal of Analytical Sciences Vol 19 No 2 (2015): 428 – 436

 

 

 

MECHANISTIC STUDIES OF SOLID STATE SELF-HEALING SYSTEMS

 

(Kajian Mekanistik Sistem Swa-Pemulihan Dalam Keadaan Pepejal)

 

Mohd Suzeren Md Jamil1*, Siti Mastura Makenan1, Noor Nabilah Muhamad1, Azwani Mat Lazim1,

Frank Jones2

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Department of Material Science & Engineering,

University of Sheffield, S1 3JD, United Kingdom

 

*Corresponding author: suzeren@ukm.edu.my

 

 

Received: 8 December 2014; Accepted: 14 January 2015

 

 

Abstract

The kinetics of diffusion and healing efficiency of healable resins at different healing times or with different concentrations of healing agent (HA) were studied. The reduction in healing efficiency at concentrations of HA greater than 8.0 weight total percentage was demonstrated to be caused by phase separation. Thus, the HA need to be soluble in the epoxy resin network for optimum healing efficiency.

 

Keywords: self-healing; healing efficiency; healing agent

 

Abstrak

Kinetik penyusupan dan keberkesanan pemulihan resin pemulihan pada masa pemulihan yang berbeza atau dengan kepekatan agen pemulihan (HA) yang berbeza telah dikaji. Penurunan keberkesanan pemulihan pada kepekatan HA yang lebih tinggi daripada 8.0 peratus berat keseluruhan adalah disebabkan oleh pemisahan fasa. Oleh itu, HA perlu larut dalam jaringan resin epoksi untuk keberkesanan pemulihan yang optimim.

 

Kata Kunci :swa-pemulihan; keberkesanan pemulihan; agen pemulihan

 

References

1.       Chawla, K. K., Composite materials: Science and engineering, Second edition. 1998, New York: Springer-Verlag.

2.       Shyr, T. & Pan, Y. (2003). Impact resistant and damage characteristics of composite laminates. Composite Structures, 62: 193-203.

3.       Mitrovic, M., Hahn, H. T., Carman, G. P., & Shyprykevich, P. (1999). Effect of loading parameters on the fatigue behavior of impact damage composite laminates. Composite Science and Technology, 59: 2059-2078.

4.       Dry, C. (1996). Procedures developed for self-repair of polymer matrix composite materials. Composite Structures, 35(3): 263-269.

5.       Chen, X., Dam, M. A., Ono, K., Mal, A., Shen, H., Nutt, S. R., Sheran, K., & Wudl, F. (2002). A thermally re-mendable cross-linked polymeric material. Science, 295(5560): 1698-1702.

6.       Hayes, S. A., Jones, F. R., Marshiya, K., & Zhang, W. (2007). A self-healing thermosetting composite material. Composites Part A: Applied Science and Manufacturing, 38(4): 1116-1120.

7.       White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature Materials, 409: 794-797.

8.       Kalista, S. J., Self-healing of thermoplastic poly(ethylene-co-methacrylic acid) copolymers following projectile puncture, in Virginia Polytechnic Institute and State University2003.

9.       Bergman, S. D. & Wudl, F., Re-mendable polymers, in Self healing materials: An alternative approach to 20 centuries, Van Der Zwaag, S., Editor. 2007, Springer. p. 45-68.

10.    Jones, F. R., Zhang, W., & Hayes, S. A., Thermally induced self healing of thermosetting resins and matrices in smart composites, in Self healing materials: An alternative approach to 20 centuries, Van Der Zwaag, S., Editor. 2007, Springer: The Netherland. p. 69-93.

11.    Hayes, S. A., Zhang, W., Branthwaite, M., & Jones, F. R. (2007). Self-healing of damage in fibre-reinforced polymer-matrix composites. Journal of The Royal Society Interface, 4(13): 381-7.

12.    Chen, X., Wudl, F., Mal, A. K., Shen, H., & Nutt, S. R. (2003). New thermally remendable highly cross-linked polymeric materials. Macromolecules, 36(6): 1802-1807.

13.    Rahmathullah, M. A. M. & Palmese, G. R. (2009). Crack-healing behavior of epoxy-amine thermosets. Journal of Applied Polymer Science, 113(4): 2191-2201.

14.    Oprea, S., Vlad, S., Stanciu, A., & Macoveanu, M. (2000). Epoxy urethane acrylate. European Polymer Journal, 76: 373-378.

15.    Yang, B., Shi, H., Pramoda, K. P., & Goh, S. H. (2007). Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology, 18: 1-7.

16.    Chattopadhyay, D. K., Siva Sankar Panda, & Raju, K. V. S. N. (2005). Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coating. Progress in Organic Coating, 54: 10-19.

17.    Barrère-Tricca, C., Halary, J. L., & Dal Maso, F. (2002). Relationship between epoxy resin properties and weepage of glass-reinforced filament-wound pipes. Oil & Gas Science and Technology, 57: 169-175.

18.    Boogh, L. & Mezzenge, R., Processing principles for thermoset composites, in Comprehensive composites materials, Kelly, A. &  Zweben, C. H., Editors. 2000, Elsevier Science: The Amsterdam.

19.    BS ISO 13586:2000. Plastics- Determination of fracture toughness (G1C and K1C) - linear elastic fracture mechanics (LEFM) approach: British Standards Institute

20.    Zhang, W., Self healing epoxy resin and composites, in University of sheffield2008.

21.    Vickerman, J. C. & Briggs, D., TOF-SIMS: Surface analysis by mass spectroscopy. 2001, Chichester: IM Publications.

22.    Swait, T. J., Interfacial optimisation of glass fibre reinforced composites by plasma polymerisation, in University of Sheffield2009.

23.    Wool, R. P. (2008). Self-healing materials: A review. Soft Matter, 4(3): 400-418.

24.    Wool, R. P. & O'Connor, K. M. (1981). A theory of crack healing in polymers. Journal of Applied Physics, 52(10): 5953-5963.

25.    Luo, X., Ou, R., Eberly, D. E., Singhal, A., Viratyaporn, W., & Mather, P. T. (2009). A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. Applied Materials and Intefaces, 1(3): 612-620.

 

Previous                    Content                    Next