Malaysian Journal of Analytical Sciences Vol 19 No 2 (2015): 445 – 453

 

 

 

EFFECT OF PH BUFFER ON SELF-HEALING HYDROGEL

 

(Kesan Penggunaan Larutan Penimbal pH Terhadap Swa Pemulihan Hidrogel)

 

Najiyyah Abdullah Sirajuddin, Mohd Suzeren Md Jamil*, Mohamad Azwani Shah Mat Lazim

 

School of Chemical Sciences and Food Technology,

Faculty Science & Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: suzeren@ukm.edu.my

 

 

Received: 8 December 2014; Accepted: 14 January 2015

 

 

Abstract

Autonomous healing of damage is a common phenomenon in living organisms but is hardly ever encountered in synthetic materials. Disulfide chemistry is used to introduce a self-healing ability in a covalently cross-linked hydrogel. This result is achieved by introducing disulfide groups in the network that are able to exchange, leading to renewal of cross-links across the damaged surfaces. ATR results showed that C=C had disappeared once the gel was formed and the percentage of gel fraction is 86%. The gel being cut shows highest healing efficiency in borax-sodium hydroxide buffer (pH 10) which is 95%. The combination of this unique self-healing properties and applicability for a large variety of polymers makes this approach ideal for biomedical applications.

 

Keywords : disulfide bond, basic medium, self-healing hydrogel

 

Abstrak

Pemulihan autonomik ke atas sebarang kerosakan atau kecederaan merupakan suatu fenomena yang berlaku pada organisma hidup tetapi sukar untuk diaplikasikan pada bahan sintetik. Keupayaan swa pemulihan dapat dicapai dengan menggunakan ikatan kovalen dinamik iaitu ikatan disulfida ke dalam suatu jaringan polimer. Ini kerana ikatan disulfida berupaya untuk putus dan cantum sekaligus dapat membawa kepada pembentukan semula taut silang pada permukaan yang terjejas. Hasil daripada ATR menunjukkan puncak C=C pada monomer telah hilang apabila gel sudah terbentuk dan peratusan keberhasilan gel adalah sebanyak 86%. Keberkesanan pemulihan paling tinggi adalah pada gel yang telah direndam dalam larutan penimbal borax-natrium hidrosida (pH 10) iaitu sebanyak 95%. Gabungan uniq antara ciri-ciri swa pemulihan dan kebolehupayaan tinggi dalam swa pemulihan menjadikan hidrogel ini amat sesuai untuk digunakan dalam aplikasi bioperubatan.

 

Kata kunci: Ikatan disulfida, medium alkali, swa pemulihan hidrogel

 

References

1.       Moulin, E., Cormos, G., & Giuseppone, N. (2012). Dynamic combinational chemistry as a tool for the design of functional materials and devices. Chemical Society reviews, 41(3): 1031–1049.

2.       Cougon, F. B. L. & Sanders, J. K. M. (2012). Evolution of dynamic combinational chemsitry. Accounts of Chemical Research, 45: 2211–2221.

3.       Giuseppone, N. (2012). Toward self-constructing materials: A systems chemistry approach. Accounts of Chemical Reseasrch, 45(12): 2178–2188.

4.       Otto, S. (2012). Dynamic molecular networks: From synthetic receptors to self-replicators. Accounts of Chemical Research, 45(12): 2200–2210.

5.       Barboiu, M. (2010). Dynamic interactive systems: Dynamic selection in hybrid organic-inorganic constitutional networks. Chemical Communications, 46: 7466–7476.

6.       Aida, T., Meijer, E. W., & Stupp, S. I. (2012). Functional supramolecular polymers. Science, 335(6070): 813–817.

7.       Lanzara, G., Yoon, Y., Liu, H., Peng, S., & Lee, W. I. (2009). Carbon nanotube reservoirs for self-healing materials. Nanotechnology, 20(33): 335704.

8.       Bergman, S. D., & Wudl, F. (2008). Mendable polymers. Journal of Materials Chemistry, 18: 41-62.

9.       Shibayama, M., & Tanaka, T. (1993). Volume phase transition and related phenomena of polymer gels. Advances in Polymer Science, 109: 1–62.

10.    Phadke, A., Zhang, C., Arman, B., Hsu, C.-C., Mashelkar, R. A., Lele, A. K., Tauber, M. J., Arya, G., & Varghese, S. (2012). Rapid self-healing hydrogels. Proceeding of the National Academy Science of U.S.A,. 109: 4383−4388.

11.    Deng, G., Li, F., Yu, H., Liu, F., Liu, C., Sun, W., Jiang, H. & Chen, Y. (2012). Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Letters, 1: 275−279.

12.    Trivedi, M. V., Laurence, J. S., & Siahaan, T. J. (2009). The role of thiols and disulfides on protein stability. Current Protein and Peptide Science, 10: 614-625.

13.    Mohd Amin, M. C. I., Ahmad, N., Halib, N., & Ahmad, I. (2012). Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers, 88: 465-473.

14.    ASTM D5045-99 (2007). Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. American Society for Testing and Materials.

15.    Yamaguchi, M., Ono, S., & Okamoto, K. (2009). Interdiffusion of dangling chains in weak gel and its application to self-repairing material. Materials Science Engineering B, 162(3): 189–194.

16.    Sirajuddin, N. A., Md Jamil, M. S., & Mat Lazim, M. A. S. (2014). Effect of cross-link density and the healing efficiency of self-healing poly(2-hydroxyethyl methacrylate) hydrogel. e-Polymers, 14(4): 289-294.

17.    Ugwu, S. O., & Apte, S. P. (2004). The effect of buffers on protein conformational stability. Pharmaceutical Technology, 86-113.

18.    Brownsey, G. J., Noel, T. R., Parker, R., & Ring, S. G. (2003). The glass transition behavior of the globular protein bovine serum albumin. Biophysical Journal, 85: 3943-3950.

19.    Saluja, A., Badkar, A. V., Zeng, D. L., Nema, S., & Kalonia, D. S. (2007). Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: Correlation with static and dynamic light scattering measurements. Biophysical Journal, 92: 234-244.

20.    Reis, J., Sitaula, R., & Bhowmick, S. (2009). Water activity and glass transition temperatures of disaccharide based buffers for desiccation preservation of biologics. Journal of Biomedical Science and Engineering, 2: 594-605.

21.    Sperling, L. H. Glass-rubber transition behavior in Introduction to Physical Polymer Science. L. H. Sperling, ed. (1986). Wiley Interscience: New York. p. 224-295.

22.    Madeka, H., & Kokini, J. L. (1996). Effect of glass transition and cross-linking on rheological properties of zein: Development of a preliminary state diagram. Cereal Chemistry, 73(4): 433-438.

 

Previous                    Content                    Next