Malaysian Journal of Analytical Sciences Vol 19 No 2 (2015): 437 – 444

 

 

 

CONSTITUTIVE, INSTITUTIVE AND UP-REGULATION OF CAROTENOGENESIS REGULATORY MECHANISM VIA IN VITRO CULTURE MODEL SYSTEM AND ELICITORS

 

(Mekanisme Regulatori dalam Pembentukan Karatenoid Secara Konsitutif, Institutif dan Regulasi Menaik Melalui Model Sistem in vitro dan Pengelisit)

 

Rashidi Othman1*, Fatimah Azzahra Mohd Zaifuddin1, Norazian Mohd Hassan2

 

1International Institute for Halal Research and Training (INHART), Herbarium Unit,

Department of Landscape Architecture, Kulliyyah of Architecture and Environmental Design,

International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia

2Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy,

International Islamic University Malaysia, 25200 Kuantan, Malaysia

 

*Corresponding author: rashidi@iium.edu.my

 

 

Received: 8 December 2014; Accepted: 14 January 2015

 

 

Abstract

Phytohormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes.

 

Keywords: carotenogenesis, elicitors, regulatory mechanisms, constitutive, institutive, up-regulation

 

Abstrak

Di dalam kebanyakan proses regulasi fisiologi tumbuhan, fitohormon asid absisik (ABA) memainkan peranan penting dan mekanisme ini dikawal oleh gen-gen yang tertentu. Keadaan persekitaran yang ekstrem dan tegar seperti kemarau, banjir, kesejukan melampau, cahaya dan suhu juga akan mempengaruhi penghasilan ABA. Peningkatan ABA akan mengakibatkan perubahan dalam ekspresi genetik dan ini terbukti apabila analisis terhadap model sistem kalus secara in vitro menghasilkan 3 jenis mekanisme regulasi tumbuhan yang dikenali sebagai konstitutif, institutif dan regulasi menaik. Justeru itu kajian ini bertujuan merekabentuk satu model sistem in vitro menggunakan kultur kalus sebagai satu alat atau medium untuk mengkaji proses regulasi tumbuhan terpilih terhadap biosintesis karatenoid di dalam persekitaran terkawal. Hasil kajian mendapati kehadiran zeaxanthin dan neoxanthin di dalam kultur kalus dan tumbuhan asal merupakan petunjuk terhadap perubahan ekspresi genetik terhadap keadaan persekitaran yang ekstrem. Menariknya, mekanisme kehadiran sebatian ini boleh diaktifkan atau dihilangkan. Kepentingan hasil kajian ini adalah faktor persekitaran boleh dimanipulasi untuk meningkatkan produktiviti atau kualiti sesuatu tanaman tanpa melalui proses pengubahsuaian genetik.

 

Kata kunci: kerotenogenesis, pengelisit, mekanisme regulatori, konsitutif, institutif, regulasi menaik

 

References

1.       Britton, G., Liaaen-Jensen, S. & Pfander, H. (1995). Carotenoids. Vol. 1A: Isolation and Analysis. Boston, USA: Birkhuser-Verlag.

2.       Chandrika, U.G. (2009). Carotenoid dyes-properties. In, T. Bechtold and R. Mussak (Eds.), Handbook of Natural Colorant. Chichester, United Kingdom: John Wiley & Sons, pp. 221-224.

3.       Taylor, M.A. & Ramsay, G. (2005). Carotenoid biosynthesis in plant storage organs: Recent advances and prospects for improving plant food quality. Physiologia Plantarum, 124(2): 143–151.

4.       Bartley, G.E. & Scolnik, P.A. (1995). Plant carotenoids: Pigments for photoprotection, visual attraction and human health. The Plant Cell, 7: 1027-1038.

5.       Römer, S. & Fraser, P.D. (2005). Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta, 221: 305-308.

6.       Cunningham Jr,F.X. & Gantt, E. (1998). Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Biology, 49(1): 557-583.

7.       Lopez, A.B., Van Eck, J., Conlin, B.J., Paolillo, D.J., O'Neill, J. & Li, L. (2008). Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2): 213-223.

8.       Othman, R., Mohd Zaifuddin, F.A. & Hassan, N.M. (2014). Carotenoid biosynthesis regulatory mechanisms in plants. Journal of Oleo Science, 63(8): 753-760.

9.       Al-Babili, S., Hugueney, P., Schledz, M., Welsch, R., Frohnmeyer, H., Laule, O. & Beyer, P. (2000). Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS letters, 485(2): 168-172.

10.    Fraser, P.D. & Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3): 228-265.

11.    Herbers, K. (2003). Vitamin production in transgenic plants. Journal of Plant Physiology, 160(7): 821-829.

12.    Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4(3): 210-218.

13.    Burkhardt, P.K., Beyer, P., Wünn, J., Klöti, A., Armstrong, G.A., Schledz, M.  (1997). Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. The Plant Journal, 11(5): 1071-1078.

14.    Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., Beyer, P. & Potrykus, I. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287: 303-305.

15.    Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P. & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One, 2(4): e350.

16.    Lu, S., Van Eck, J., Zhou, X., Lopez, A.B., O'Halloran, D.M., Cosman, K.M. et al. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. The Plant Cell Online, 18(12): 3594-3605.

17.    Othman, R. (2009). Biochemistry and genetics of carotenoid composition in potato tubers. Christchurch, New Zealand: Lincoln University, PhD thesis.

18.    Bramley, P.M. & Mackenzie, A. (1988). Regulation of carotenoid biosynthesis. Current Topics in Cellular Regulation, 29: 291-343.

19.    Çinar, I. (2004). Carotenoid pigment loss of freeze-dried plant samples under different storage conditions. LWT - Food Science and Technology, 37(3): 363-367.

20.    Fatimah, A.M.Z., Norazian, M.H. & Rashidi, O. (2012). Identification of carotenoid composition in selected ‘ulam’ or traditional vegetables of Malaysia. International Food Research Journal, 19(2): 527-530.

21.    Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

22.    Hannoufa, A. & Hossain, Z. (2012). Regulation of carotenoid accumulation in plants. Biocatalysis and Agricultural Biotechnology, 1(3): 198–202.

23.    Lu, S. & Li, L. (2008). Carotenoid metabolism: Biosynthesis, regulation and beyond. Journal of Integrative Plant Biology, 50(7): 778-785.

24.    Demmig, B., Winter, K., Kruger, A. & Czygan, F.C. (1987). Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiology, 84: 218-224.

25.    Yamamoto, H.Y., Bugos, R.C. & Hieber, A.D. (1999). Biochemistry and molecular biology of the xanthophyll cycle. In, H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell (Eds.), The Photochemistry of Carotenoids. Netherlands: Kluwer Academic Publishers, pp. 293-303.

26.    Frank, H. & Cogdell, R.J. (1993). Photochemistry and function of carotenoids in photosynthesis. In, A.J. Young and G. Britton (Eds.), Carotenoids in Photosynthesis. London, UK: Chapman and Hall, pp. 253-326.

27.    Young, A.J. (1993). Factors that affect the carotenoid composition of higher plants and algae. In, A.J. Young and G. Britton (Eds.), Carotenoids in Photosynthesis. London, UK: Chapman and Hall, pp. 161-205.

28.    Sandmann, G., Römer, S. & Fraser, P.D. (2006). Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metabolic Engineering, 8(4): 291-302.

29.    Horvath, E., Pal, M., Szalai, G., Paldi, E. & Janda, T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum, 51(3): 480-487.

30.    Cag, S., Cevahir-Oz, G., Sarsag, M. & Goren-Saglam, N. (2009). Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pakistan Journal of Botany, 41(5): 2297-2303.

31.    Ashraf, M., Akram, N.A., Arteca, R.N. & Foolad, M.R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29: 162-190.

 

Previous                    Content                    Next