Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 565 – 573

 

 

 

EVALUATION OF THE COMPRESSIVE STRENGTH OF CEMENT-SPENT RESINS MATRIX MIXED WITH BIOCHAR

 

(Penilaian Kekuatan Mampatan Matriks Simen-Resin Terpakai yang dicampur dengan Bioarang)

 

Zalina Laili1, 2*, Muhamad Samudi Yasir1, Mohd Abdul Wahab2, Nur Azna Mahmud2,

Nurfazlina Zainal Abidin2

 

1Nuclear Science Programme,

School of Applied Physics, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan< Malaysia

2Waste & Environmental Technology Division

Malaysian Nuclear Agency (Nuclear Malaysia), 43000 Bangi, Kajang, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: liena@nm.gov.my

 

 

Received: 2 April 2015; Accepted: 25 May 2015

 

 

Abstract

The evaluation of compressive strength of cement-spent resins matrix mixed with biochar was investigated. In this study, biochar with different percentage (5%, 8%, 11% 14% and 18%) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and biochar were also investigated. The performance of cemented spent resins with the addition of biochar was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion i.e. > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of biochar content. Result from the water resistance test showed that only one specimen that contained of 5% of biochar failed the water resistance test due to the high of spent resins/biochar ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8%, 11%, 14% and 18% of biochar content were resistance in water and suitable for the leaching study of radionuclides from cement-biochar-spent resins matrix.

 

Keywords: biochar, cement, compressive strength, solidification, spent resins, water resistance

 

Abstrak

Penilaian terhadap kekuatan mampatan matriks simen-resin terpakai yang dicampur dengan bioarang telah dijalankan. Dalam kajian ini, bioarang dengan peratusan yang berbeza (5%, 8%, 11% 14% dan 18%) telah digunakan sebagai bahan tambah bagi pemejalan menggunakan simen ke atas resin terpakai. Beberapa sifat fizik dan kimia resin terpakai dan bioarang juga dikaji. Prestasi resin terpakai yang disimenkan dengan ditambah bioarang dinilai berdasarkan kekuatan mampatan dan ujian ketahanan air. Hasil kajian menunjukkan kekuatan mampatan pada 7, 14 dan 28 hari masa pengawetan adalah melebihi kriteria minimum aras penerimaan bentuk sisa, iaitu 3.45 MPa.  Analisis statistik menunjukkan tiada perkaitan signifikan di antara kekuatan mampatan spesimen dan peratusan kandungan bioarang. Hasil kajian ke atas ketahanan air pula menunjukkan hanya satu spesimen, iaitu yang mengandungi 5% bioarang gagal dalam ujian ketahanan air. Kekuatan mampatan spesimen didapati meningkat selepas ujian ketahanan air. Ini menunjukkan berlaku kesinambungan dalam penghidratan selepas direndam di dalam air. Keputusan daripada kajian ini juga mencadangkan spesimen dengan kandungan bioarang sebanyak 8%, 11%, 14% dan 18% adalah tahan di dalam air dan sesuai untuk menjalani kajian larut lesap radionuklid daripada matriks simen-bioarang-resin terpakai.

 

Kata kunci: bioarang, simen, kekuatan mampatan, pemejalan, resin terpakai, ketahanan air

 

References

1.       Vanderperre,S., Centner,B. and Charpentier, D. (2010). Radioactive Spent Ion-Exchange Resins Conditioning by the Hot Supercompaction Process at Tihange NPP, WN2010 Conference Transcript 6: pp. 4954-496.

2.       Junfeng, L. Gang, Z. and Jianlong, W. (2005). Solidification of low-level radioactive waste resins in ASC-zeolite blends. Nuclear Engineering and Design 235: 817-820.

3.    Wang, J. and Wan, Z. (2015). Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy, 78:47-55.

4.       Yarrow, D. (2014). How to make biochar. Access online www.dyarrow.org/CarbonSmartFarming/CSF6-Adsorption.pps [6 Mac 2015].

5.       Yang, Y. and Sheng, G. (2003). Pesticide adsorptivity of aged particulate matter arising from crop residue burns. J.Agri.Food Chem. 51:5047-5051.

6.       Beesley, L. and Marmiroli, M. (2011). The immobilization and retention of soluble arsenic, cadmium and zink by biochar. Environmental Pollution. 159: 474-480.

7.       Kumar, S., Loganathan, V.A, Gupta, R.B and Bannet, M.O. (2011). An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management, 92:2504-2512.

8.       European Biochar Certificate. (2013). Analytical methods, http://www.european-biochar.org/en/analytical%20methods [3 Mac 2015].

9.       ASTM Standards (2008). Standard test method for compressive strength of cylindrical concrete specimen C39/C39M-05. ASTM International. United States.

10.    Siskind, B. and Cowgill, M. G. (1992). Techincal justifications for the test and criteria in the waste form technical position appendix on cement stabilisation. Proceedings of Waste Management '92, pp. 1753-1759.

11.    Laird, D.A. (2010). Pyrolysis and biochar oppurtunities for distributed production and soil quality enhancement. Proceeding of the Sustainable Feedstock for Advance Biofuel Workshop. pp. 257-281.

12.    IBI. (2012). Standardized product definition and product testing guidelines for biochar that in used in soi1.http://www.biochar-international.org [13 Mac 2015].

13.    Ylmen, R., Jaglid, U. Steenari, B. and Panas, I. (2009). Early hydration and setting of Portland cement monitored by IR, SEM and vicat techniques. Cement and Concrete Research, 39: 433-439.

14.    Suh, I.S, Kim, J.H., Han, W. and Park, H.W. 1991. Acceptance criteria and their evaluation techniques for solidified waste  forms. Proceeding of Waste Management, pp. 735-740.

15.    Ma, H. and Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical stimulation. Computers and Concrete11: 317-336.

16.    Glasser, F. P. (1997). Fundamnetal aspects of cement solidification and stabilisation. Journal of Hazardous Materials, 52:151-171.

17.    Atahan, H. N., Oktar, N. O. and Tasdemir, M. A. (2009). Effects of water-cement ratio and curing time on the critical pore width of hardened paste. Construction and Building Materials, 23:1196-1200.

18.    Carde, C. and Fraincois, R.(1999). Modelling the loss of the strength and porosity increase due to the leaching of cement paste.Cement Conrete Compossite., 21:181-188.

 




Previous                    Content                    Next