Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 574 – 585

 

 

 

SELECTIVE SURFACE CHARACTERISTICS AND EXTRACTION PERFORMANCE OF A NITRO-GROUP EXPLOSIVE MOLECULARLY IMPRINTED POLYMER

 

(Karekter Permukaan yang Selektif dan Prestasi Pengekstrakan Kumpulan Nitro Peletup Polimer Molekul Tercetak)

 

Marinah Mohd Ariffin1*, Norhafiza Ilyana Yatim1, Norhayati Mohd Tahir1,2

 

1School of Marine and Environmental Sciences,

2Institute of Oceanography,

Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Malaysia

 

*Corresponding author:  erin@umt.edu.my

 

 

Received: 21 January 2015; Accepted: 5 April 2015

 

 

Abstract

A novel molecularly imprinted polymer (MIP) was synthesized as a highly selective and specific sorbent for solid phase extraction (SPE) of 2,4,6-trinitrotoluene (TNT). TNT-MIP was prepared by bulk polymerisation process using 2,4,6-trinitrotoluene (TNT) as template, methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethylacrylate (EGDMA) as the cross-linker. Non-imprinted polymer (NIP) was prepared under the similar procedure but without the addition of template as a control polymer. Prior to analysis, the polymer monoliths were ground and sieved in the range of 25-38 µm before incorporated as SPE sorbent. The TNT-MIP and NIP performance validation were analysed by high performance liquid chromatography (HPLC) at 254 nm of UV detector. The limit of detection (LOD) and limit of quantitation (LOQ) range were 0.03-0.07 µg/mL and 0.05-0.11 µg/mL, respectively. The MIP showed excellent selectivity towards the template, TNT with percentage recovery and RSD value, 94.1±13.7 compared to TNT’s metabolites, 4-amino-2,6-dinitrotoluene, 4-ADNT (31.7±27.2) and 2-amino-4,6-dinitrotoluene, 2-ADNT (41.2±6.1), respectively. The physical imprinting effect of MIP and NIP was characterized by using scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET). Evaluation performance proved that the developed TNT-MIP was good in TNT selectivity and could be applied in real samples analysis.

 

Keywords: molecularly imprinted polymers, solid-phase extraction, 2,4,6-trinitrotoluene

 

Abstrak

Sebuah polimer molekul tercetak (MIP) baru telah disintesis sebagai pengerap yang sangat selektif dan khusus untuk pengekstrakan fasa pepejal (SPE) bagi 2,4,6- trinitrotoluena (TNT). TNT-MIP telah disediakan dengan proses pempolimeran pukal menggunakan 2,4,6- trinitrotoluena (TNT) sebagai templat, asid metakrilik (MAA ) sebagai monomer, etilena glikol dimetilakrilat (EGDMA) sebagai pemaut silang. Polimer molekul tidak-tercetak (NIP) telah disediakan bawah prosedur yang sama tetapi tanpa tambahan templat sebagai polimer kawalan. Sebelum analisis, polimer dihancurkan dan ditapis dalam lingkungan 25-38 μm sebelum dijadikan sebagai penjerap SPE. Pengesanan prestasi TNT-MIP dan NIP dianalisis oleh kromatografi cecair berprestasi tinggi (HPLC) pada 254 nm pengesan UV. Had pengesanan (LOD) dan had kuantitatif (LOQ) adalah, 0.03-0.07 μg/mL dan 0.05-0.11 μg/mL masing-masing . MIP menunjukkan pemilihan yang cemerlang ke arah templat, TNT dengan peratus pengembalian dan nilai RSD , 94.1 ± 13.7 berbanding metabolit TNT , 4-amina-2,6-dinitrotoluena , 4-ADNT ( 31.7 ± 27.2 ) dan 2-amina-4, 6-dinitrotoluena, 2-ADNT (41.2 ± 6.1). Kesan fizikal pencetakan MIP dan NIP dicirikan dengan menggunakan mikroskop imbasan elektron (SEM) dan Brunauer, Emmett dan Teller (BET). Penilaian prestasi membuktikan bahawa TNT-MIP yang dibangunkan bagus digunakan TNT pemilihan dan boleh digunakan dalam analisis sampel sebenar.

 

Kata kunci: polimer molekul tercetak, pengekstrakkan fasa pepejal, 2,4,6-trinitrotoluena

 

References

1.       Yinon, J. (1999). Environmental detection explosives. Forensic and Environmental Detections of Explosives, pp 186-219. New York: John Wiley & Sons, Ltd

2.       Trammell, S. A., Zeinall, M., Melde, B. J., Charles, P. T, Velez, F. L., Dinderman, M. A., Kusterback, A. and Markowitz, M. A. (2008). Organosilicas as Preconcentration Materials for the Electrochemical Detection of Trinitrotoluene. Analytical Chemistry 80: 4627–4633.

3.       Lordel, S. Chapuis-Hugon, F., Eudes, V., and Pichon, V. (2010). Development of imprinted materials for the selective extraction of nitroaromatic explosives. Journal of Chromatography A 1217: 6674–6680.

4.       Tamayo, F. G., Turiel, E., and Martin-Esteban, A. (2007). Review: Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. Journal of Chromatography A (1152): 32–40.

5.       Poma, A., Turner, A. P. F., and Piletsky, S. A. (2010). Advances in the manufacture of MIP nanoparticles, Trends in Biotechnology 28(12): 629-637.

6.       Tóth, B., Pap, T., Horvath, V., and Horvai, G. (2007). Which molecularly imprinted polymer is better?. Analytica Chimica Acta 591: 17–21.

7.       Pomogailo, A. D., Dzhardimalieva, G. I., and Kestelman, V. N. (2010) Macromolecular Metal Carboxylates and Their Nanocomposites. Springer Series in Materials Science 138, 7-25.

8.       Sulatha, M. S., and Natarajan, U. (2011) Origin of the Difference in Structural Behavior of Poly(acrylic acid) and Poly(methacrylic acid) in Aqueous Solution Discerned by Explicit-Solvent Explicit-Ion MD Simulations. Industrial Engineering and Chemistry Research 50 (21):11785–11796.

9.       Miller, J. N., and Miller, J. C. (2000). Calibration methods in instrumental analysis: regression and correlation. In Statistics and chemometrics for analytical chemistry, 4th edition, pp 107-147. England: Prentice Hall.

10.    Nicholls, I. A., Andersson, H. S., Charlton, C., Henschel, H., Karlsson, B. C. G., Karlsson, J. G., O‘Mahony, J., Rosengren, A. M., Rosengren, K. J. and Wikman, S. (2009). Review: Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosensors and Bioelectronics 25: 543–552.

11.    Gonz´alez, G. P., Hernando, P. F., Alegr´ia, J. S. D. (2006). A morphological study of molecularly imprinted polymers using the scanning electron microscope. Analytica Chimica Acta 557: 179–183.

12.    Haginaka, J., Tabo, H., Kagawa, H. (2008). Uniformly sized molecularly imprinted polymers for d-chlorpheniramine: Influence of a porogen on their morphology and enantioselectivity. Journal of Pharmaceutical and Biomedical Analysis 46: 877–881.

13.    Condon, J. B. (2006). Surface Area and Porosity Determination by Physisorption: Measurement and Theory. Elsevier. 1-27.

14.    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., and Siemieniewska, T. (1985). Reporting Physisorption Data For Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Applied Chemistry 57(4): 603—619.

15.    Qi, P., Wang, J., Wang, L., Li, Y., Jin, J., Su, F., Tian, Y., and Chen, J. (2010). Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprint ing phenols. Polymer 51: 5417-5423.

16.    Barrett, E. P., Joyner, L. G., and Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. The Volume and Area Distributions In Porous Substances 73: 373-380.

17.    Sellergen, B., and Shea, K. J. (1993). Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers. Journal of Chromatography 635: 31-49.

18.    Masquè, N., Marcè, R. M., and Borrull, F. (2001). Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction. Trends in Analytical Chemistry 20(9): 477-486.

19.    Sellergen, B., and Hall, A. J. (2001). Fundamental aspects on the synthesis and characterisation of imprinted network polymers. In Molecularly imprinted polymers. Man-made mimics of antibodies and their applications in analytical chemistry: Techniques and instrumentation in analytical chemistry Volume 23, ed. B. Sellergen, pp 21-57. Amsterdam: Elsevier.

20.    Cormack, P. A. G., and Elorza, A. Z. (2004). Review: Molecularly imprinted polymers: synthesis and characterization. Journal of Chromatography B 804: 173–182.

21.    Dong, W., Yan, M., Liu, Z., Wu, G., and Li, Y. (2007). Effects of solvents on the adsorption selectivity of molecularly imprinted polymers: Molecular simulation and experimental validation. Separation and Purification Technology 53: 183–188.

22.    Spivak, D. (2005). Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews 57: 1779– 1794.

23.    Saloni, J., Lipkowski, P., Dasary, S. S. R., Anjaneyulu, Y., Yu, H. and Jr, G. H. (2011). Theoretical study of molecular interactions of TNT, acrylic acid, and ethylene glycol dimethacrylate-Elements of molecularly imprinted polymer modeling process. Polymer 52: 1206-1216.

24.    Harwood, L. M., Moody, C. J., and Percy, J. M. (1999). Experimental Organic Chemistry: standard and microscale. 2nd edition. Malden, MA: Blackwell, Science Publishing. 276-305.

25.    Xie, C., Liu, B., Wang, Z., Gao, D., Guan, G. and Zhang, Z. (2008). Molecular Imprinting at Walls of Silica Nanotubes for TNT Recognition. Analytical Chemistry 80(2): 437-443.

 




Previous                    Content                    Next