Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 586 – 594

 

 

 

Enhanced Zn(II) and Pb(II) removal from wastewater using thiolated chitosan beads (ETB)

 

(Peningkatan Jerapan Zn(II) dan Pb(II) daripada Sisa Air dengan Manik Kitosan Tertiol)

 

Soon Kong Yong1,2*, Nanthi Bolan2,3, Enzo Lombi2,3, William Skinner4

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre for Environmental Risk Assessment and Remediation,

University of South Australia, SA 5095, Australia

3Cooperarive Research Centre for Contaminants Assessment and Remediation of the Environment,

 University of South Australia, SA 5095, Australia

4Ian Wark Research Institute,

University of South Australia, SA 5095, Australia

 

*Corresponding author: yongsk@salam.uitm.edu.my

 

 

Received: 14 April 2015; Accepted: 25 May 2015

 

 

Abstract

Chitosan beads (E) was first prepared by phase inversion of chitosan acetate solutions. Thiolated chitosan beads (ETB) was synthesised by soaking E in a mixture of ethanol and carbon disulfide for 7 days and then rinsed thoroughly with water and ethanol. Sulfur content of ETB is 7.88 %. The thiolation process has increased the Brunauer-Emmett-Teller (BET) surface area of E beads from 39.5 m2/g to 46.3 m2/g. ETB is categorised as macroporous material (pore aperture: 182 nm) with multiple and uniform porous layers. A new shoulder at 1594 cm-1 was found in Fourier Transform infrared spectroscopy (FTIR) spectra of ETB, is assigned to thiourea moiety and was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. The Pb(II) sorption capacity by ETB was higher than E beads at all sorbent dosage (except 5.0 g/L). At sorbent dosage of 5.0 g/L, sorption capacity of Zn(II) by ETB was enhanced by 3.2 times as compared to E beads. Sorption data fitted well to linearised Freundlich isotherm model and Ho’s pseudo second order kinetic model. The higher KF value of ETB than E indicated greater sorption capacity. The increase in Zn(II) and Pb(II) sorption capacities were attributed to enhanced chemisorption with thiol group in ETB beads.

 

Keywords: chitosan, heavy metal, thiourea, crosslink, chemisorption

 

Abstrak

Manik kitosan (E) terlebih dahulu disediakan dengan proses pembalikan fasa larutan kitosan dalam asid asetik. Manik kitosan tertiol (ETB) telah disintesis dengan merendam E ke dalam campuran etanol dan karbon disulfida selama 7 hari dan kemudian dibilas bersih dengan air dan etanol. Kandungan sulfur ETB adalah 7.88 %. Proses tiolasi telah meningkatkan luas permukaan Brunauer-Emmett-Teller (BET) basi manik E dari 39.5 m2/g hingga ke 46.3 m2/g. ETB dikategorikan sebagai bahan makropor (liang bukaan: 182 nm) dengan beberapa lapisan berliang yang seragam. Kehadiran kumpulan tiourea di dalam ETB ditunjukkan oleh satu bahu baru pada 1594 cm-1 di dalam spektrum Fourier Transform inframerah (FTIR), dan juga telah disahkan dengan analisis spektrum X-ray fotoelektron (XPS). Jerapan Pb(II) oleh manik ETB adalah lebih tinggi daripada manik E pada setiap dos bahan penjerap (kecuali pada 5.0 g/L). Pada dos 5.0 g/L, penjerapan Zn(II) oleh ETB telah dipertingkatkan sebanyak 3.2 kali berbanding dengan manik E. Data penjerapan dilengkapi dengan baik untuk model linear isoterma Freundlich dan model linear kinetik tertib pseudo dua Ho. Nilai KF bagi ETB adalah lebih tinggi berbanding E, ini menunjukkan kapasiti jerapan ETB yang lebih besar berbanding E. Peningkatan kapasiti jerapan Zn(II) dan Pb (II) dikaitkan dengan peningkatan jerapan kimia dengan kumpulan tiol dalam manik ETB.

 

Kata kunci: kitosan, logam berat, tiourea, taut silang, jerapan kimia
 

References

1.       Renault, F., Sancey, B., Badot, P. M. and Crini, G. (2009). Chitosan for coagulation/flocculation processes - An eco-friendly approach. European Polymer Journal, 45(5): 1337-1348.

2.       Juang, R. S. and Shao, H. J. (2002). A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Research, 36(12): 2999-3008.

3.       Muzzarelli, R., Tanfani, F., Mariotti, S. and Emanuelli, M. (1982). Preparation and characteristic properties of dithiocarbamate chitosan, a chelating polymer. Carbohydrate Research, 104(2): 235-243.

4.       Sankararamakrishnan, N. and Sanghi, R. (2006). Preparation and characterization of a novel xanthated chitosan. Carbohydrate Polymers, 66(2): 160-167.

5.       Gavilan, K. C., Pestov, A. V., Garcia, H. M., Yatluk, Y., Roussy, J. and Guibal, E. (2009). Mercury sorption on a thiocarbamoyl derivative of chitosan. Journal of Hazardous Materials, 165(1-3): 415-426.

6.       Wan Ngah, W. S., Ariff, N. and Hanafiah, M. (2010). Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, Air, & Soil Pollution, 206(1): 225-236.

7.       Popuri, S. R., Vijaya, Y., Boddu, V. M. and Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100(1): 194-199.

8.       Rafatullah, M., Sulaiman, O., Hashim, R. and Ahmad, A. (2009). Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of hazardous materials, 170(2-3): 969-977.

9.       Ertugay, N. and Bayhan, Y. K. (2010). The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination, 255(1-3): 137-142.

10.    Dahiya, S., Tripathi, R. M. and Hegde, A. G. (2008). Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass. Bioresource Technology, 99(1): 179-187.

11.    Benguella, B. and Benaissa, H. (2002). Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. Water Research, 362463-2474.

12.    Chatterjee, S., Lee, D. S., Lee, M. W. and Woo, S. H. (2010). Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads. Bioresource Technology, 101(12): 4315-4321.

13.    Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N. and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2-3): 616-645.

14.    Wang, L., Xing, R., Liu, S., Cai, S., Yu, H., Feng, J., Li, R. and Li, P. (2010). Synthesis and evaluation of a thiourea-modified chitosan derivative applied for adsorption of Hg(II) from synthetic wastewater. International Journal of Biological Macromolecules, 46(5): 524-528.

15.    Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85(22): 3533-3539.

16.    Alfarra, A., Frackowiak, E. and Béguin, F. (2004). The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Applied Surface Science, 228(1-4): 84-92.

17.    Silikas, N., Wincott, P. L., Vaughan, D., Watts, D. C. and Eliades, G. (2007). Surface characterization of precious alloys treated with thione metal primers. Dental Materials, 23(6): 665-673.

18.    Donia, A. M., Atia, A. A. and Heniesh, A. M. (2008). Efficient removal of Hg(II) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldehyde. Separation and Purification Technology, 60(1): 46-53.

19.    Rorrer, G. L., Hsien, T. Y. and Way, J. D. (1993). Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Industrial & Engineering Chemistry Research, 32(9): 2170-2178.




Previous                    Content                    Next