Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 493 – 502

 

 

 

DECOLORIZATION OF REACTIVE ORANGE 16 DYE USING FABRICATED CHARCOAL BASE METALLIC COMPOSITE ELECTRODE

 

(Penyahwarnaan Pewarna Reaktif Oren 16 Menggunakan Elektrod Komposit Logam Berasaskan Arang)

 

Zuhailie Zakaria, Norazzizi Nordin, Siti Zubaidah Hasan, Noor Afzalina Baharuddin,

Majd Ahmed Jumaah, Mohamed Rozali Othman*

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi,  Selangor, Malaysia

 

*Corresponding author: rozali@ukm.edu.my

 

 

Received: 12 March 2015; Accepted: 9 April 2015

 

 

Abstract

The effectiveness of charcoal base metallic composite electrodes using commercial activated charcoal was investigated to fabricate an effective and low cost electrode to decolorize textile industries wastewater. The mixture of charcoal-graphite-metal powder (first layer) and graphite powder-polyvinyl chloride (second layer) was mixed together and later pressed at 10 toncm-2 to form two layers pellet. C.I. Reactive Orange 16 (RO16) was chosen as the model dye because of its high resistance towards conventional treatment methods while NaCl was selected as supporting electrolyte. The electrode efficiencies were determined by percentage of RO16 decolorization. The effect of metal used, PVC percentage, composition of charcoal and graphite and duration of electrolysis time were examined and the results indicated that application of charcoal base metallic composite electrode using pellet with the composition of C30CG18Sn12PVC40-CG 60PVC40 able to decolorized RO16 dye up to 83.3% respectively after 2 hours electrolysis time and increase proportionally with increase duration of electrolysis time. The study of activated charcoal base metallic composite electrode illustrated that reduction of PVC percentage also led to enhance in RO16 decolorization percentage. The decolorization of RO16 was determined by the changes of absorption spectrum intensity of azo chromophore (-N=N-) using UV-Vis spectrophotometer at λ = 388 and 492.50 nm.

 

Keywords: activated charcoal, Reactive Orange 16, composite, decolorisation, electrolysis

 

Abstrak

Penggunaan elektrod komposit logam berasaskan arang menggunakan arang teraktif komersial dikaji untuk menghasilkan elektrod yang efektif dan berkos rendah dalam menyahwarna air buangan industri tekstil. Campuran serbuk arang-grafit-logam (lapisan pertama) dan serbuk grafit-polivinil klorida (lapisan kedua) dicampurkan dan kemudiannya dikenakan tekanan 10 tancm-2 untuk menghasilkan dua lapisan pelet. C.I. Reaktif Oren 16 (RO16) dipilih sebagai pewarna contoh kerana ketahanannya yang tinggi terhadap kaedah perawatan konvensional manakala NaCl dipilih sebagai elektrolit penyokong. Keberkesanan elektrod ditentukan oleh peratus penyahwarnaan RO16. Kesan jenis logam yang digunakan, peratus PVC, komposisi arang dan grafit serta tempoh masa elektrolisis dikaji dan hasil kajian menunjukkan bahawa penggunaan elektrod komposit logam berasaskan arang menggunakan pelet dengan nisbah C30 CG 18Sn12PVC40-CG 60PVC40 berjaya menyahwarnakan RO16 sehingga 83.3% selepas 2 jam masa elektrolisis dan berkadar terus dengan peningkatan tempoh elektrolisis. Kajian terhadap elektrod komposit logam berasaskan arang teraktif menunjukkan bahawa penurunan peratus PVC juga membawa kepada peningkatan peratus penyahwarnaan RO16. Penyahwarnaan RO16 ditentukan oleh perubahan keamatan spektrum penyerapan kromofor azo (-N=N-) menggunakan spektrofotometer UV-Nampak pada λ = 388 dan 492.50 nm.

 

Kata kunci: arang teraktif, Reaktif Oren 16, komposit, penyahwarnaan, elektrolisis

 

References

1.       López-Grimau, V. and Gutierrez, M. (2006) Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere 62(1): 106-112.

2.       Gonçalves, M. S. T., Pinto, E. M. S., Nkeonye, P. and Oliveira-Campos, A. M. F.  (2005) Degradation of C.I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis. Dyes and Pigments 64(2): 135-139.

3.       Willmott, N., Guthrie, J. and Nelson, G. (1998) The biotechnology approach to colour removal from textile effluent. Journal of the Society of Dyers and Colourists 114(2): 38-41.

4.       Liakou, S., Pavlou, S. and Lyberatos, G. (1997)  Ozonation of azo dyes. Water Science and Technology 35(4): 279-286.

5.       Šíma, J. and Hasal, P. (2013) Photocatalytic Degradation of Textile Dyes in a TiO2/UV System. Chemical Engineering 32.

6.       Robinson, T., Mcmullan, G., Marchant, R. and Nigam, P. (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology 77(3): 247-255.

7.       Chen, G. (2004) Electrochemical technologies in wastewater treatment. Separation and purification Technology 38(1): 11-41.

8.       Kuhn, A.T. (1971) Electrolytic decomposition of cyanides, phenols and thiocyanates in effluent streams—a literature review. Journal of Applied Chemistry and Biotechnology 21(2): 29-34.

9.       Nordin, N., Amir, S. F. M., Riyanto and Othman, M. R. (2013) Textile Industries Wastewater Treatment by Electrochemical Oxidation Technique Using Metal Plate. International Journal of Electrochemical Science 8(9): 11403-11415.

10.    Vlyssides, A.G., Loizidou, M., Karlis, P. K., Zorpas, A. A. and Papaioannou, D. (1999) Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode. Journal of Hazardous Materials 70(1–2): 41-52.

11.    Rajeshwar, K., Ibanez, J.G. and Swain, G.M. (1994)  Electrochemistry and the environment. Journal of Applied Electrochemistry 24(11): 1077-1091.

12.    Maljaei, A., Arami, M. and Mahmoodi, N.M. (2009) Decolorization and aromatic ring degradation of colored textile wastewater using indirect electrochemical oxidation method. Desalination 249(3): 1074-1078.

13.    Öğütveren, Ü.B. and Koparal, S. (1994) Color removal from textile effluents by electrochemical destruction. Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology 29(1): 1-16.

14.    Pelegrini, R., Peralta-Zamora, P., De Andrade, A. R., Reyes, J. and Durán, N.   (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental 22(2): 83-90.

15.    Andrade, L.S., Tasso, T. T., Da Silva, D. L., Rocha-Filho, R. C., Bocchi, N. and Biaggio, S. R.   (2009) On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16 dye. Electrochimica Acta 54(7): 2024-2030.

16.    Iqbal, M.J. and Ashiq, M.N. (2007) Adsorption of dyes from aqueous solutions on activated charcoal. Journal of Hazardous Materials 139(1): 57-66.

17.    Van Duck, P.J. and  van de Voorde, H. (1984 )Activated charcoal and microflora in water treatment. Water Research 18(11): 1361-1364.

18.    Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J. O. D. and Fernández-Pereira, C.   (2008) Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal 144(1): 42-50.

19.    Riyanto, Salimon, J. and Othman, M. R. (2007) Perbandingan hasil pengoksidaan elektrokimia etanol dalam larutan alkali yang menggunakan elektrod platinumpolivinilklorida (Pt-PVC) dan kepingan logam Pt. Sains Malaysiana 36(2): 175-181.

20.    Migliorini, F.L., Braga, N. A., Alves, S. A., Lanza, M. R. V., Baldan, M. R. and Ferreira, N. G.   (2011) Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials 192(3): 1683-1689.

21.    Albertús, F., Llerena, A., Alpı́Zar, J., Cerdá, V., Luque, M., Rı́Os, A. and Valcárcel, M.   (1997) A PVC–graphite composite electrode for electroanalytical use. Preparation and some applications. Analytica chimica acta 355(1): 23-32.

22.    Chatzisymeon, E., Xekoukoulotakis, N. P., Coz, A., Kalogerakis, N. and Mantzavinos, D.   (2006) Electrochemical treatment of textile dyes and dyehouse effluents. Journal of Hazardous Materials 137(2): 998-1007.

23.    Rajkumar, D. and Kim, J.G. (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials 136(2): 203-212.

24.    Moore, R.R., Banks, C.E. and Compton, R.G. (2004) Basal plane pyrolytic graphite modified electrodes:  Comparison of carbon nanotubes and graphite powder as electrocatalysts. Analytical Chemistry 76(10): 2677-2682.

25.    Nordin, N. (2012) Penggunaan elektrod komposit dalam penyahwarnaan air sisa industri tekstil melalui pengoksidaan elektrokimia. Tesis Sarjana, Universiti Kebangsaan Malaysia, Bangi.

 




Previous                    Content                    Next