Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 520 – 530

 

 

 

SYNTHESIS, STRUCTURAL AND SPECTROSCOPIC STUDIES OF PALLADIUM(II) METALLO-MACROCYLES CONTAINING ANCILLARY BLOCKING LIGANDS AND N,N’-2,6-BIS(3-PYRIDYLMETHYL)PYRIDINE DICARBOXAMIDE

 

(Sintesis, Struktur Dan Kajian Spektroskopik Makrosiklik-Berlogam Paladium(II) Terkandung Ligan Sampingan dan 2,6-Bis(3-Piridilmetil)Piridin Dikarbosamida)

 

Maisara Abdul Kadir 1*, Rafidah Ramli 1, Nursyazwani Kassim1, Nafisah Mansor1, Christopher James Sumby 2

 

1School of Fundamental Science,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

2 School of Chemistry & Physics,

The University of Adelaide, 5005 Adelaide, Australia

 

*Corresponding author: maisara@umt.edu.my

 

 

Received: 22 March 2015; Accepted: 18 May 2015

 

 

Abstract

Reaction between N,N’-2,6-bis(3-pyridylmethyl)pyridine dicarboxamide (L) with dichloropalladium(II) 2,2’-bipyridine [PdCl2(2,2’-bipy)] and dichloropalladium(II) ethylenediamine [PdCl2(en)] gave rise to two novel metallo-macrocycles, [Pd(L)(2,2’-bipy)](PF6)2 (A1) and [Pd(en)(L)](PF6)2·H2O·2CH3OH  (A2), respectively. These complexes were characterized by spectroscopic techniques such as Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), electrospray ionization mass spectrometry (ESI-MS) and elemental analysis. The studies on the interactions between the protons of the ligand and the protons of the ancillary ligands (etc. bipy, en) of the complexes were identified by using two dimensional NMR techniques such as Nuclear Overhauser Spectroscopy (2D NOESY) and correlation spectroscopy (COSY). X-ray crystallography shows that complex A2 form a bowl-like structure with one hexafluorophosphate anions encapsulated in the molecule cavity.  The hexafluorophosphate anions form weak interaction with the ancillary ligand ethylenediamine (N-H…F, d = 2.379, D = 3.113 Ε) which stabilized by weak C-HΌF hydrogen bonding.  The presence of weak anion-p contact is also observed between the anion and the central pyridine of the metallo-macrocycle. Further analysis by diffusion-ordered spectroscopy (DOSY) has shown that the diffusion rates of complexes A1 and A2 are lower from the theoretical value. This might be due to the complexing of hexafluorophosphate anions that increase the hydrodynamic radii of the complexes.

 

Keywords: flexible, anion-p, hydrogen bonding, palladium, metallo-macrocycles

 

Abstrak

Tindak balas antara ligan 2,6-bis(3-piridilmetil)piridin dikarbosamida (L) dengan dikloropaladium(II) 2,2’-bipiridin[PdCl2(2,2’-bipy)] dan dikloropaladium(II) etilenadiamina [PdCl2(en)] telah memberikan dua makrosiklik- berlogam yang baru, masing-masing sebagai [Pd(L)(2,2’-bipy)](PF6)2 (A1) dan [Pd(en)(L)](PF6)2·H2O·2CH3OH  (A2). Kompleks ini telah dicirikan dengan kaedah spektroskopi seperti Fourier Pengubah Inframerah (FT-IR), Nukleus Magnetik Resonan (NMR), elektrosemburan pengionan spektrometri jisim (ESI-MS) and analisis unsur. Kajian interaksi antara proton terhadap ligan serta proton terhadap ligan sampingan (seperti bipy, en) dalam kompleks dikenalpasti dengan menggunakan teknik NMR dua dimensi seperti spektroskopi Nuklear Overhauser (2D NOESY) and spektroskopi Korelasi (COSY). Kajian X-ray kristalografi menunjukkan bahawa kompleks A2 membentuk struktur mangkuk dengan satu anion heksafluorofosfat terperangkap dalam kaviti molekul. Anion heksafluorofosfat membentuk ikatan lemah dengan ko-ligan etilenadiamina (N-H…F, d = 2.379, D = 3.113 Ε) dan distabilkan oleh ikatan hidrogen C-HΌF. Kehadiran ikatan lemah anion-p juga dilihat di antara anion dengan pusat piridin makrosiklik-berlogam itu. Analisis seterusnya menggunakan spektroskopi sebaran turutan (DOSY) menunjukkan kadar sebaran yang rendah oleh A1 dan A2 berbanding nilai teori. Ini mungkin disebabkan oleh pengkompleksan anion heksafluorofosfat yang meningkatkan jejari hidrodinamik kompleks tersebut.

 

Kata kunci: ligan, ikatan anion-p, ikatan hidrogen, palladium, makrosiklik-berlogam

 

References

1.       Allendorf, M. D., Bauer, C. A., Bhakta, R. K., and Houk, R. J. T. (2009). Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 38: 1330 – 1352.

2.       Filby, M. H. and Steed, J. W. (2006). A Modular Approach to Organic, Coordination Complex and Polymer-Based Podand Hosts for Anions. Coord. Chem. Rev. 250: 3200 – 3218.

3.       Yao, L.Y., Qin, L., Xie, T. Z., Li, Y.  Z. and Yu, S. Y. (2011). Synthesis and Anion Sensing of Water-Soluble Metallomacrocycles. Inorg. Chem. 50: 6055 – 6062.

4.       Mullen, K. M. and Beer, P. D. (2009). Sulfate Anion Templation of Macrocycles, Capsules, Interpenetrated and Interlocked Structures. Chem. Soc. Rev, 38: 1701 – 1713.

5.       Hasenknopf, B., Lehn, J. M., Kneisel, B. O., Baum, G. and Fenske, D. (1996). Self-Assembly of a Circular Double Helicate. Angew. Chem. Int. Ed. Engl. 35: 1838 – 1840.

6.       Fujita, M., Umemoto, K., Yoshizawa, M., Fujita, N., Kusukawa, T. and Biradha, K. (2001). Molecular Paneling via Coordination. Chem. Commun. 509 – 518.

7.       McMorran, D. A. and Steel, P. J. (1998). The First Coordinatively Saturated, Quadruply Stranded Helicate and Its Encapsulation of A Hexafluorophosphate Anion. Angew. Chem. Int. Ed. 37: 3295 – 3297.

8.       Fleming, J. S., Mann, K. L. V., Carraz, C. A., Psillakis, E., Jeffery, J. C., McCleverty, J. A. and Ward, M. D. (1998). Anion-Templated Assembly of a Supramolecular Cage Complex. Angew. Chem. Int. Ed. Engl. 37 (9): 1279 – 1281.

9.       Beer, P. D., and Gale, P. A. (2001). Anion Recognition and Sensing: The State of The Art and Future Perspectives. Angew. Chem. Int. Ed. Engl. 40 (3): 486 – 516.

10.    Villar, R. (2003). Anion-Templated Synthesis. Angew. Chem. Int. Ed. Engl. 42: 1460 – 1477.

11.    Mu, Y.J., Yu, L.N., Jiang, X.F., Yu, S.Y. and Yamaguchi, K., 2014. Self-assembly of an organo-palladium  molecular basket that encapsulates cobalticarborane anion in water. Inorg. Chem. Commun. 44: 119 – 123.

12.    Abdul-Kadir, M., Hanton, L. R. and Sumby, C. J. (2011). Self-Assembled Metallo-Macrocycle Based Coordination Polymers with Unsymmetrical Amide Ligands. Dalton Trans. 40: 12374 – 12380.

13.    Abdul-Kadir, M., Hanton, L. R. and Sumby, C. J. (2012). Building Blocks for Coordination Polymers: Self-Assembled Cleft-Like and Planar Discrete Metallo-Macrocyclic Complexes. Dalton Trans. 41: 4497 – 4505.

14.    Abdul-Kadir, M., Clements, P. R., Hanton, L. R., Hollis, C. A. and Sumby, C. J. (2012). Pre-Organisation or A Hydrogen Bonding Mismatch: Silver (I) Diamide Ligand Coordination Polymers Versus Discrete Metallo-Macrocyclic Assemblies. Supramol. Chem. 24 (8): 627 – 640.

15.    Kadir, M. A., Mansor, N., Yusof, M. S. M. and Sumby, C. J. (2014). Synthesis and Crystal Structure of N-6-[(4-Pyridylamino) Carbonyl]-Pyridine-2-Carboxylic Acid Methyl Ester Zinc Complex. Complex Metals. 1 (1): 32 – 37.

16.    Sheldrick, G. M. (1990). Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Cryst. A 46: 467 – 473.

17.    Sheldrick, G. M. (1997). SHELXL-97 Program for Crystal Structure Refinement. University of Gottingen, Gottingen, Germany.

18.    Barbour. L. J. (2001). X-Seed — A Software Tool for Supramolecular Crystallography. Supramol. Chem. 1 (4-6): 189 – 191.

19.    Persistence of Vision Raytracer Pty. Ltd, P.R., 2003-2008. Williamstown, Australia.

20.    Sheldrick, G. M. (1997). CIFTAB Program For Generation Of Crystallographic Tables. University of Gottingen, Gottingen, Germany.

21.    Sumby, C. J., and Hanton, L. R. (2009). Syntheses and Studies of Flexible Amide Ligands: A Toolkit For Studying Metallo-Supramolecular Assemblies for Anion Binding. Tetrahedron. 65: 4681-4691.

22.    McCormick, B. J., Jaynes, Jr., and Kaplan, R. I. (1972). Dichloro(ethylenediamine) Palladium (II) and (2,2′-bipyridine)dichloro Palladium (II). Inorg. Synth.  13: 216 – 218. 

23.    Qin, Z., Jennings, M. C. and Puddephatt, R. J. (2003). Self-Assembly in Palladium(II) and Platinum(II) Chemistry: The biomimetic Approach. Inorg. Chem. 42: 1956 – 1965.

24.    McMorran, D. A., and Steel, P. J. (1998). The First Coordinatively Saturated, Quadruply Stranded Helicate and Its Encapsulation of a Hexafluorophosphate Anion. Angew. Chem. Int. Ed. Engl. 37: 3295 – 3297.

25.    Yuan, H., Thomas, L., and Woo, L. K. (1996). Synthesis and Characterization of Mono-, Bis- and Tetrakis-Pyridyltriarylporphyrin Pd(II) and Pt(II) Supramolecular Assemblies. Molecular Structure of a Pd-Linked Bisporphyrin Complex1. Inorg. Chem. 35 (10): 2808 – 2817.

26.    Krishnan, V. V. (1997). Determination of Oligomeric State of Proteins in Solution from Pulsed-Field-Gradient Self-Diffusion Coefficient Measurements. A Comparison of Experimental, Theoretical, and Hard-Sphere Approximated Values. J. Magn. Reson. 124 (2): 468 – 473.

27.    Takeharu, H., Mutsumi K., Midori C. and Yoshimasa F. (2005). A New Self-Assembling Capsule via Metal Coordination Chem. Commun. 2321 – 2323.

28.    Qin, Z., Jennings, M. C. and Puddephatt, R. J.(2002). Crosslinking A Palladium(II) Polymer Gives a Laminated Sheet Structure. Chem. Commun. (4): 354 – 355.

29.    Hardouin-Lerouge, M., Hudhomme, P. and Salle, M. (2011). Molecular Clips and Tweezers Hosting Neutral Guests. Chemical Society Reviews. 40 (1): 30 – 43.

30.    Ning, G. H., Yao, L. Y., Liu, L. X., Xie, T. Z., Li, Y. Z., Qin, Y., Pan, Y. J. and Yu, S. Y. (2010).Self-Assembly and Host−Guest Interaction of Metallomacrocycles Using Fluorescent Dipyrazole Linker with Dimetallic Clips. Inorg. Chem. 49 (17): 7783 – 7792.

31.    Ning, G-H., Xie, T-Z., Pan, Y-J., Li, Y-Z. and  Yu, S-Y. (2010). Self-Assembly of Bowl-Like Trinuclear Metallo-Macrocycles. Dalton Trans. 39: 3203 – 3211.

32.    Zangrando, E., Casanova, M. and Alessio, E. (2008). Trinuclear Metallacycles: Metallatriangles and Much More. Chem. Rev. 108: 4979 – 5013.

33.    Liu, L-X., Huang, H-P., Li, X., Sun, Q-F., Sun, C-R., Li, Y-Z. and Yu, S-Y. (2008). Coordination Molecular Hats Binding Acetonitrile via C–H∙∙∙Π Interactions. Dalton Trans.1544 – 1546.

34.    Maekawa, M., Konaka, H., Minematsu, T., Kuroda-Sowa, T., Munakata, M. and Kitagawa, S. (2007). Bowl-Shaped Cu(I) Metallamacrocyclic Ethylene and Carbonyl Adducts as Structural Analogues of Organic Calixarenes. Chem. Commun. 5179 – 5181.

35.    Maekawa, M., Kitagawa, S., Kuroda-Sowa, T. and Munakata, M. (2006). Sandwich-Shaped Silver(I) Metallomacrocycles Encapsulating A XF62− (X = Si, Ge And Sn) Anion. Chem. Commun. 2161 – 2163.

36.    Hay, B. P., and Bryantsev, V. S. (2008). Anion–Arene Adducts: C–H Hydrogen Bonding, Anion–P Interaction, and Carbon Bonding Motifs. Chem. Commun. 2417 – 2428.

37.    Mooibroek, T. J., Black, C. A., Gamez, P., and Reedijk, J. (2008). What’s New in the Realm of Anion−π Binding Interactions? Putting the Anion−π Interaction in Perspective. Cryst. Growth Des. 8: 1082 – 1093.

38.    Bowman-James, K. (2005). Alfred Werner Revisited:  The Coordination Chemistry of Anions. Acc. Chem. Res. 38: 671 – 678.

 




Previous                    Content                    Next