Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 513 – 519

 

 

 

EFFECT OF TEMPERATURE ON THE EPR RESPONSE OF GAMMA IRRADIATED POTASSIUM TARTRATE HEMIHYDRATE

 

(Kesan Suhu Terhadap Kalsium Tartrate Hemihidrat yang Didedahkan Kepada Sinar Gama Menggunakan Spektrometer Resonan Elektron Paramagnet)

 

Norehan Mohd Nor1*, Suhairul Hashim1, Ahmad Termizi Ramli1, Elias Saion2, Taiman Kadni3

 

1Department of Physics, Faculty of Science

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

2Department of Physics, Faculty of Science

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3Secondary Standard Dosimetry Lab,

Agensi Nuklear Malaysia , 43000 Kajang, Selangor, Malaysia

 

*Corresponding author: norehan@utm.my

 

 

 

Received: 20 April 2015; Accepted: 18 May 2015

 

 

Abstract

Electron paramagnetic resonance (EPR) can be used as radiation detection for appropriate materials exposed to ionizing radiation. In this study, potassium tartrate hemihydrate (PT) was irradiated with Co-60 gamma rays with absorbed dose range from 1 to 9 Gy. The effect of temperature to the unirradiated and irradiated samples were investigated using electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra were recorded in the temperature range from room temperature (293 K) to 413 K. The results show that the unirradiated PT sample does not exhibit any EPR signal when thermal energy is given to the sample. However, the irradiated PT samples exhibit EPR spectrum with three lines recorded at room and high temperatures. The main strong line dominates the spectrum of the irradiated PT sample appears at g = 2.0032. Heating the irradiated sample above room temperature showed increases in signal intensity. The dose response curves of the signal at variable temperature were described well by a linear function.

 

Keywords: potassium tartrate hemihydrate; EPR dosimetry; gamma radiation

 

Abstrak

Kaedah resonan elektron paramagnet (EPR) boleh digunakan sebagai kaedah pengesanan sinaran menggunakan bahan tertentu yang didedahkan kepada sinaran mengion. Di dalam kajian ini, sampel kajian iaitu kalsium tartrate hemihidrat diuji sebagai bahan untuk pengesanan sinaran. Ia didedahkan kepada sinar gama dari sumber kobalt-60 dengan dos terserap antara 1 hingga 9 Gy. Kesan suhu terhadap sampel kajian yang tidak didedahkan dan juga yang didedahkan kepada sinar gama dikaji menggunakan spektroskopi resonan elektron paramagnet. Suhu kajian yang digunakan semasa merekod spektrum EPR ini adalah di dalam julat 293 K hingga 413 K. Keputusan kajian menunjukkan, sampel yg tidak didedahkan kepada sinar gama tidak merekodkan sebarang isyarat walaupun tenaga haba diberikan semasa merekod isyarat. Walaubagaimanapun, sampel yang didedahkan kepada sinar gama menunjukkan terbentuknya tiga isyarat spektrum EPR pada suhu bilik dan juga pada suhu yang tinggi. Isyarat kuat yang mendominasi spektrum sampel yang didedahkan kepada sinaran berlaku pada nilai faktor g = 2.0032. Apabila suhu untuk merekod isyarat EPR ditingkatkan daripada suhu bilik, keamatan isyarat bagi sampel yang didedahkan kepada sinaran juga meningkat. Lengkung sambutan dos terhadap isyarat EPR pada suhu yang berbeza dapat dijelaskan menggunakan fungsi linear.

 

Kata kunci: kalsium tartrate hemihidrat; dosimetri EPR; sinar gama

 

References

1.       Ranby, B. and Rabek, J. F. (1977). ESR Spectroscopy in Polymer Research. Springer-Verlag Berlin Heidelberg, Germany: 1 – 53.

2.       Brustolon, M. and Giamello, E. (2009). Electron Paramagnetic Resonance: A Practitioner’s Toolkit. John Wiley & Sons, Inc., Hoboken, New Jersey:325 – 374.

3.       ICRU Report 80. (2008). Dosimetry systems, International Commission on Radiation Units and Measurement.

4.       Vestad, T. A. Malinen, E., Lund, A., Hole, E. O. and Sagstuen, E. (2003). EPR dosimetric properties of formates. Applied Radiation and Isotopes. 59: 181 – 188.

5.       Lund, E., Gustafsson, H., Danilczuk, M., Sastry, M. D., Lund, A., Vestad, T. A., Malinen, E., Hole, E. O. and Sagstuen, E. (2005). Formates and dithionates: sensitive EPR-dosimeter materials for radiation therapy. Applied Radiation and Isotopes. 62: 317 – 324.

6.       Gustafsson, H., Lund, A. and Lund, E. (2011). Potassium dithionate EPR dosimetry for determination of absorbed dose and LET distributions in different radiation qualities. Radiation Measurements. 46: 936 – 940.

7.       Baran, M. P., Bugay, O. A.. Kolesnik, S. P., Maksimenko, V. M., Teslenko, V. V., Petrenko, T. L. and Desrosiers, M. F. (2006). Barium dithionate as an EPR dosemeter. Radiation Protection Dosimetry. 120 (1 – 4): 202 – 204.

8.       Olsson, S. K., Bagherian, S., Lund, E.; Carlsson, G. A. and Lund, A. (1999). Ammonium tartrate as an ESR dosimeter material. Applied Radiation and Isotopes. 50: 955 – 965.

9.       Polat, M. and Korkmaz, M. (2009). The effects of temperature on ESR spectrum of gamma-irradiated ammonium tartrate. Radiation Physics and Chemistry. 78: 966 – 970.

10.    Brai, M., Gennaro, G., Marrale, M., Tranchina, L., Bartolotta, A. and D’Oca, M. C. (2007). ESR Response to 60Co-rays of ammonium tartrate pellets using Gd2O3 as additive. Radiation Measurement. 42: 225 – 231.

11.    Ikeya, M., Hassan, G. M., Sasaoka, H., Kinoshita, Y., Takaki, S. and Yamanaka, C. (2000). Strategy for finding new materials for ESR dosimeters. Applied Radiation and Isotopes. 52: 1209 – 1215.

12.    Korkmaz, G., Özsayın, F. and Polat, M. (2011). An electron spin resonance (ESR) investigation of the dosimetric potential of potassium tartrate. Radiation Protection Dosimetry. 48: 337 – 343.

13.    Ewing, G. W. (1997). Analytical Instrumentation Hanbook, 2nd ed., Revised and Expanded, Marcel Dekker, Inc., New York, USA.

 

 




Previous                    Content                    Next