Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 799 - 807

 

 

 

GLUCOSE SULFATE IMPRINTED POLYMER PREPARED BY SOL-GEL PROCESS ON SILICA MICROPARTICLES SURFACE: KINETIC MODELING AND ISOTHERM STUDIES

 

(Penyediaan Glukosa Sulfat Polimer Tercetak Melalui Proses Sol-Gel Pada Permukaan Mikro Zarah Silika: Kajian Model Kinetik dan Isoterma)

 

Azalina Mohamed Nasir1*, Mohd Noor Ahmad1, Mohd Irfan Hatim Mohamed Dzahir2, Noorhidayah Ishak1

 

1School of Material Engineering,

Universiti Malaysia Perlis,

Kompleks Pusat Pengajian Jejawi II, Taman Muhibah, 02600 Arau, Perlis, Malaysia

2School of Bioprocess Engineering,

Universiti Malaysia Perlis,

Pusat Pengajian Jejawi III, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: azzalina80@gmail.com

 

 

Received: 23 November 2014; Accepted: 27 June 2015

 

 

Abstract

Determination of monomers or structures of Glucose sulfate (sulfated sugars) are prerequisite for understanding their biological roles. Here, surface molecular imprinted polymer (MIP) on silica gel particles was applied for recognition of the biologically relevant sulfated sugar substitution on sugar. The non-covalent surface MIP was prepared by a sol-gel process using three different functional monomers; amine, imidazole and methyl-imidazole functioned silane with glucose sulfate as template model. The sulfated sugar imprinted silica microparticles were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). A batch adsorption experiment were carried out at constant temperature between these MIPs of three different monomers and shown that all MIPs presented the best fit to Langmuir isotherm model. The MIP-methyl-imidazole had showed highest binding capacity of 53.07 mg/g, whereas the MIP-amine possess high imprinting factor (IF; 2.24). Nevertheless, MIP with high imprinting factor was preferred due to the high affinity and more specific interaction of the template adsorption. The kinetic model behavior study was carried out on these MIPs. The results indicated that the MIP-amine and MIP-imidazole were best described of pseudo-second-order kinetic model while, the MIP-methyl-imidazole can be expressed as pseudo-first order kinetic model.  

 

Keywords: glucose sulfate, kinetic modeling and isotherm, molecular imprinted polymer, sol-gel process

 

Abstrak

Penentuan monomer atau struktur glukosa sulfat (gula sulfat) adalah pra-syarat untuk memahami peranan biologinya. Di sini, permukaan polimer molekul tercetak (MIP) pada zarah silika gel telah digunakan bagi mengenalpasti sifat biologi yang berkaitan dengan penggantian gula sulfat pada gula. Permukaan MIP bukan kovalen telah disediakan melalui proses sol-gel menggunakan tiga monomer fungsian yang berbeza; amina, imidazole dan metil-imidazole berfungsi silana dengan sulfat glukosa sebagai model templat. Gula sulfat tercetak pada silika zarah mikro telah dikenalpasti oleh Spektrofotometer Inframerah Transformasi Fourier (FT-IR). Satu kumpulan eksperimen penjerapan telah dijalankan pada suhu malar di antara MIP yang mempunyai tiga jenis monomer berbeza dan ini menunjukkan bahawa kesemua MIPs menunjukkan ianya sesuai kepada Langmuir model isoterma. The MIP-metil-imidazole telah menunjukan kapasiti ikatan tertinggi 53.07 mg/g, manakala MIP-amina mempunyai faktor tercetak tinggi (IF; 2.24). Walau bagaimanapun, MIP dengan faktor tercetak tertinggi telah dipilih disebabkan oleh afiniti yang tinggi dan interaksi yang lebih khusus bagi penjerapan template. Kajian terhadap tingkah laku model kinetik telah dijalankan ke atas MIP ini. Keputusan menunjukkan bahawa MIP-amina dan MIP-imidazole telah mengikuti model kinetik pseudo-tertib kedua sementara, yang MIP-metil-imidazole boleh dinyatakan sebagai model kinetik pseudo-pertama. 

 

Kata kunci: gula sulfat, model kinetik dan isoterma, permukaan polimer molekul tercetak, proses sol-gel

 

References

1.       Couto, A. S., Soprano, L. L., Landoni, M., Pourcelot, M., Acosta, D. M., Bultel, L., Parente, J., Ferrero, M. R., Barbier, M., Dussouy, C., Esteva, M. I., Kovensky, J. and Duschak, V. G. (2012). An anionic synthetic sugar containing 6-SO3-NAcGlc mimics the sulfated cruzipain epitope that plays a central role in immune recognition. FEBS Journal 279: 3665–3679.

2.       Chavante, S. F., Brito, A. S., Lima, M., Yates, E., Nader, H., Guerrini, M., Torri, G. and Bisio, A. (2014). A heparin-like glycosaminoglycan from shrimp containing high levels of 3-O-sulfated d-glucosamine groups in an unusual trisaccharide sequence. Carbohydrate Research 390: 59-66

3.       Ebrahimzadeh, H., Dehghani, Z., Asgharinezhad, A. A., Shekari, N. and Molaei, K. (2013) Determination of haloperidol in biological samples using molecular imprinted polymer nanoparticles followed by HPLC-DAD detection. International Journal of Pharmaceutics, 453: 601-609

4.       Xie, L., Guo, J., Zhang, Y., Hu, Y., You, Q. and Shi, S. (2015). Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chemistry 178: 18-25

5.       Ahmed, MEH., Mbianda, X. Y., Mulaba-Baafubiandi, A. F. and Marjanovic, L. (2013). Ion imprinted polymers for the selective extraction of silver(I) ions in aqueous media: Kinetic modeling and isotherm studies. Reactive & Functional Polymer 73: 474-483.

6.       Nematollahzadeha, A., Shojaei, A., Abdekhodaie, M. J. & Sellergrena, B. (2013). Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column.  Journal Colloid Interface Science 404: 117–126.

7.       Siñeriz, F., Ikeda, Y., Petit, E., Bultel, L., Haupt, K., Kovensky, J. and Papy-Garcia, D. (2007). Toward an alternative for specific recognition of sulfated sugars. Preparation of highly specific molecular imprinted polymers. Tetrahedron 63(8): 1857-1862.

8.       Yin Y. M., Chen Y. P., Wang X. F., Liu. Y., Liu H. L. and Xie M. X. (2012). Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples. Journal of Chromatography A 1220(13): 7-13.

9.       Simon, R. L. and Spivak, D. A. (2004). Performance analysis of molecularly imprinted polymers for carboxylate and aminophosphate templates using commercially available basic functional monomers. Journal of Chromatography B 804(1): 203-209.

10.    Adam, F., Chew, T. S., Mannyarasai, H., Appaturi, J. N. and Hello, K. M. (2013). Synthesis and characterization of silica–imidazole mesostructured composite from agricultural biomass. Microporous and Mesoporous Materials 167: 245-248.

11.    Wan, X., Tian, M. and Row, K. H. (2010). Ionic liquid-modified silica as a new stationary phase for chromatographic separation. Journal of Analytical Chemistry 65(8): 798-802.

12.    Smith B (1999). Infrared spectral interpretation a systematic approach, CRC Press Boca Raton London New York Washington, D.C

13.    Foo, K. Y. and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156(1): 2-10.

14.    Garcia-Calzon, J. A. and Diaz-Garcia, M. E. (2007). Characterization of binding sites in molecularly imprinted polymers. Sensors and Actuators B: Chemical 123(2): 1180-1194.

15.    López, M. M. C., Cela Pérez, M.C., García, M. S. D., Vilariño, J. M. L., Rodríguez, M. V. G. & Losada, L. F. B. (2012). Preparation, evaluation and characterization of quercetin-molecularly imprinted polymer for preconcentration and clean-up of catechins. Analytica Chimica Acta 721(6): 68-78.

16.  Clausen, D. N., Pires, I. M. R. and Tarley, C. R. T. (2014). Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA–SiO2) hybrid material synthesized with different molar ratios. Materials Science and Engineering: C 44: 99-108.




Previous                    Content                    Next