Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 808 - 814

 

 

 

OPTIMIZATION ON PRETREATMENT CONDITIONS OF SEAWEED LIQUID WASTE FOR BIOETHANOL PRODUCTION

 

(Pengoptimuman Kondisi Pra-Rawatan Sisa Cecair Rumpai Laut untuk Penghasilan Bioetanol)

 

Nur Zatul -‘Iffah Zakaria1, Dachyar Arbain1*, Mohd Noor Ahmad2, Mohd. Irfan Hatim Mohamed Dzahir1

 

1School of Bioprocess Engineering,

Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis Malaysia

2Centre of Excellence for Advanced Sensor Technology (CEASTech),

Universiti Malaysia Perlis, Pusat Pengajian Jejawi II, Taman Muhibah, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: dachyar@unimap.edu.my

 

 

Received: 23 November 2014; Accepted: 27 June 2015

 

 

Abstract

Seaweed liquid waste (SLW) from a non-conventional seaweed (Gracilaria sp.) drying process where the seaweed is ruptured and filter-squeezed has been investigated. The liquid contains proteins and minerals which potentially pollute the environment if it is not been properly treated. For that reason, this paper deals with study on the feasibility of SLW utilization as a feedstock for bioethanol production. The fermentation of bioethanol production was carried out by Saccharomyces cerevisiae in which ethanol produced was measured by gas chromatography. In order to increase its fermentable sugar content, the SLW was treated with dilute acid. Center composite design of response surface methodology (RSM) had been used to optimize the sugar content by varying the parameters involved in the dilute acid pretreatment conditions. These are sulphuric acid concentration (M), temperature (oC) and seaweed waste concentration (g/ml).  It was obtained that the R2 value reached 0.97 indicating that the model is acceptable. The three parameters showed p-value less than 0.05 suggesting their significance interactions. The optimization resulted 25 times improvement of reducing sugar concentration. The reducing sugar resulting from the optimized pretreatment was later used as fermentation medium to produce ethanol up to 123.197mg/l.

 

Keywords: bioethanol, dilute acid pretreatment, Gracilaria sp., Saccharomyces cerevisiae, seaweed liquid waste

 

Abstrak

Sisa cecair rumpai laut (SLW) hasil daripada proses pengeringan konvensional rumpai laut ( Gracilaria sp.) di mana rumpai laut dipecah dan diperah-tapis telah di kaji. Cecair ini mengandungi protein dan mineral-mineral yang berpotensi mencemarkan alam sekitar sekiranya tidak dirawat dengan betul. Oleh hal yang demikian, kertas kerja ini berkaitan dengan kajian mengenai kemungkinan penggunaan SLW sebagai bahan mentah untuk penghasilan bioetanol. Penapaian penghasilan bioetanol dilakukan oleh Saccharomyces cerevisiae di mana etanol yang dihasilkan diukur dengan kromatografi gas. Dalam usaha untuk meningkatkan kandungan gula fermentasi, maka SLW dirawat dengan asid cair. Reka bentuk komposit berpusat dalam metodologi permukaan sambutan (RSM) digunakan untuk mengoptimumkan kandungan gula dengan mengubah parameter yang terlibat dalam keadaan pra-rawatan asid cair. Parameter tersebut adalah kepekatan asid sulfurik (M), suhu (oC) dan kepekatan sisa rumpai laut (g/ml). Didapati bahawa nilai R2 mencapai 0.97 yang menunjukkan bahawa model ini boleh diterima. Tiga parameter menunjukkan nilai-p kurang daripada 0.05 menunjukkan kepentingan interaksi. Pengoptimuman ini memberikan peningkatan 25 kali kepekatan gula penurun. Gula penurun hasil daripada pra-rawatan yang dioptimumkan kemudiannya digunakan sebagai medium fermentasi untuk menghasilkan etanol sehingga 123.197mg / l.

 

Kata kunci: bioetanol, pra-rawatan acid cair, Gracilaria sp., Saccharomyces cerevisiae, sisa cecair rumpai laut

 

References

1.       Mansa R. F., Mansuit H., Fong K. F. and Sipaut C. S. (2013).  Review: Pre-treatments and Fermentation of Seaweed for Bioethanol Production.  Developments in Sustainable Chemical and Bioprocess Technology: 129–136.

2.       Kim H. Ra C. H., and Kim S.K. (2013). Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnology and Bioprocess Engineering 18 (3): 533–537.

3.       Hom S. J. Aasen I. M.  and Østgaard K. (2000). Ethanol production from seaweed extract.  Journal of Industrial Microbiology and Biotechnology 25 (5): 249–254.

4.       Wang X. Liu X. and Wang G. (2011). Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation.  Journal of Integrative Plant Biology 53 (3): 246–52.

5.       Kawa-rygielska J. and Pietrzak W. (2013). Ethanol fermentation of very high gravity ( VHG ) maize mashes by Saccharomyces cerevisiae with spent brewer’s yeast supplementation. Biomass and Bioenergy: 1–8.

6.       Goh C. S. and Lee K. T. (2010). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development.  Renewable and Sustainable Energy Reviews 14 (2): 842–848.

7.       Park J., Hong J., Chul H., Geun S., Kim S., Yoon J. and Jin Y. (2012). Use of Gelidium amansii as a promising resource for bioethanol : A practical approach for continuous dilute-acid hydrolysis and fermentation.  Bioresource Technology 108: 83-88.

8.       Karunakaran S. and Gurusamy R. (2011). Bioethanol Production as Renewable Biofuel from Rhodopyhtes Feedstock. International Journal of Biological Technology 2 (2): 94–99.

9.       Jang J.-S., Cho Y., Jeong G.-T. and Kim S.-K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica.  Bioprocess and Biosystems Engineering 35 (1–2): 11–8.

10.    Saqib A. A. N. and Whitney P. J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy 35 (11):4748–4750.

11.    Wyman C. E., Decker S. R., Himmel M. E., Brady J. W. and Skopec C. E. (2005). Hydrolysis of Cellulose and Hemicellulose. Polysaccharides: Structural Diversity and Functional Versatility: 1–39.

12.    Schmidt I. A. J., Orth R. J. and  Franz J. A. (2004). Hydrolysis of Biomass Material US 6 - 578 - 692,

13.    Zheng Y., Pan Z., and Zhang R. (2009). Overview of biomass pretreatment for cellulosic ethanol production.  International of Journal Agricultural & Biological Engineering 2 (3): 51–68.

 




Previous                    Content                    Next