Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 852 - 859

 

 

 

CHARACTERIZATION OF Dy-DOPED AT Ca SITE IN LOW-DENSITY

Bi1.6Pb0.4Sr2Ca2-XDyXCu3OY SUPERCONDUCTOR

 

(Pencirian Dy yang didopkan pada tapak Ca dalam ketumpatan rendah

Bi1.6Pb0.4Sr2Ca2-XDyXCu3OY Superkonduktor)

 

Azhan Hashim1*, Robaiah Mamat2, Azman Kasim1, Noor Syuhaida Ibrahim2,

Nor Azura Che Mahmud 2, Mohd Mustaqim Rosli 3

 

1Faculty of Applied Sciences

Universiti Teknologi Mara Pahang, 26400 Bandar Jengka, Pahang, Malaysia

2Faculty of Applied Sciences

Universiti Teknologi Mara Shah Alam, 40450 Shah Alam, Selangor, Malaysia

3School of Physics,

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

 

*Corresponding author: dazhan@pahang.uitm.edu.my

 

 

Received: 23 November 2014; Accepted: 27 June 2015

 

 

Abstract

Dysprosium-doped at Ca site in low density Bi1.6Pb0.4Sr2Ca2-xDyxCu3Oy with varying stoichiometry (where x=0.000, 0.025, 0.05, 0.1 and 0.2) were prepared by solid state method. In this work, the samples were characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), electrical resistance, and critical current density (JC) measurements. All of the results indicated deterioration on the superconducting properties due to the substitution of dyprosium at Ca site compared to undoped samples. It has been observed that the JC of low-density Bi-2223 at 60 K under zero magnetic field for Dy-free and x=0.050 (optimum doping level) was measured to be 12.120 A/cm2 and 1.547 A/cm2 respectively. Superconductivity transition temperature, TC of undoped samples were found to be higher than doped samples. For undoped samples the TC zero was observed at 102 K and it decreased to 55 K, 66 K, 40 K and 40 K for x=0.025, 0.050, 0.100, and 0.200 respectively. The XRD results showed the c-axis decrease as the Dy doping increase and the crystal structure of the doping samples changed from tetragonal to orthorhombic. FESEM results showed the surface morphology of  Dy doping indicated a weaker link between grains compared to the undoped samples.

 

Keywords: Superconductor, BSCCO, Dy-doped, Low-density

 

Abstrak

Dysprosium didopkan di tapak Ca kepadatan rendah Bi1.6Pb0.4Sr2Ca2-xDyxCu3Oy dengan stoikiometri yang berbeza-beza (di mana x = 0.000, 0.025, 0.05, 0.1 dan 0.2) telah disediakan melalui kaedah keadaan pepejal. Dalam kajian ini, sampel telah dicirikan melalui  analisis pembelauan sinar-X (XRD), bidang pelepasan imbasan elektron mikroskop (FESEM), dan telah diukur rintangan elektrik dan ketumpatan arus kritikal (JC). Semua keputusan penggantian Dyprosium di tapak Ca menunjukkan  kemerosotan telah berlaku pada sifat-sifat superkonduktor berbanding dengan sampel yang tidak didopkan. Ia telah diperhatikan bahawa JC ketumpatan rendah Bi-2223 pada suhu 60 K di bawah sifar medan magnet untuk sampel bebas Dy dan x = 0.050 (tahap optimum pendopian) masing-masing telah diukur dan  mempunyai nilai 12.120 A/cm2 dan 1.547 A/cm2. Suhu peralihan kesuperkonduksian, TC sampel yang tidak didopkan didapati lebih tinggi berbanding sampel yang didopkan. Untuk sampel yang tidak didopkan TC sifar diperhatikan berada pada 102 K dan ia menurun kepada 55 K, 66 K, 40 K dan 40 K untuk x = 0.025, 0.050, 0.100 dan 0.200. Keputusan XRD menunjukkan penurunan pada paksi-c disebabkan peningkatan Dy-yang didopkan dan struktur kristal sampel yang di dopkan juga berubah dari tetragonal kepada ortorombik. Keputusan FESEM menunjukkan permukaan morfologi Dy yang di dopkan  lebih  lemah pautan di antara butiran berbanding dengan sampel yang tidak didopkan.

 

Kata kunci: Superkonduktor, BSCCO,Dy-yang di dop, Kepadatan rendah

 

References

1.       Qureshi, A. H., Arshad, M., Durrani, S. K. and Waqas, H.(2008). Impact of Pb Substitution On The Formation of High TC Superconducting Phase In Bscco System Derived Through Sol - Gel Process, Journal of Thermal Analysis and Calorimetry 94: 175–180.

2.       Dogruer, S. B. M., Varilci, G. Y. A. and Zalaoglu, C. T. Y. (2012). Role of Cerium Addition on Structural and Superconducting Properties of Bi-2212 System, Journal of Superconductivity and Novel Magnetism 25: 847– 856.

3.       Pop, A. V., Ilonca, G., Ciurchea, D., Pop, V. and Deac, I. G.(2000).  Effects of Y, Er and Lu substitution upon superconductivity in (Bi,Pb):2223 system, Physica B : Condensed Matter 284-288: 1101–1102.

4.       Kaya, M. A. M. C., Ozcelik, B., Ozkurt, B. and Sotelo, A. (2013). Effect of Ce substitution on structural and superconducting properties of Bi-2212 system, Journal of Materials Science: Materials Electronic 24: 1580–1586.

5.       Vinu,S., Sarun,P.M., Biju,A., Shabna,R. and Guruswamy,P. (2008). The effect of substitution of Eu on the critical current density and flux pinning properties of (Bi, Pb) -2212, Superconductor Science and Technology 21: 3–6.

6.       Aksan, M. A., Altin, S., Balci, Y. and Yakinci, M. E. (2007). Structural characterization and transport properties of the HTC Bi2Sr2(Ca,Cd) Cu2O8 + δ glass-ceramic rods, Materials Chemistry Physics 106: 428–436.

7.       Terzioglu, C., Aydin, H., Ozturk, O., Bekiroglu, E. and Belenli, I. (2008). The influence of Gd addition on microstructure and transport properties of Bi-2223, Physica B : Condensed Matter 403: 3354–3359.

8.       Ozkurt, B. (2013). Enhancement in superconducting transition temperature and JC values in Na-doped Bi2Sr2Ca1Cu2- xNaxOy superconductors, Journal of Materials Science: Materials Electronic 24: 2426–2431.

9.       Jin, H. and Kotzler, J. (1999). Effect of La-doping on growth and superconductivity of Bi-2212 crystals, Physica C : Superconductivity, 325: 153–158.

10.    Azhan, H., Fariesha F., Yusainee S.Y.S., Azman K. and Khalida S. (2013).  Superconducting Properties of Ag and Sb Substitution on Low-Density YBa2Cu3Oδ Superconductor, Journal of Superconductivity and Novel Magnetism 26(4): 931-935.

11.    Sedky, A. (2008). On the influence of rare-earth substitution for Ca in Bi(Pb):2212 superconducting system, Physica C: Superconductivity 468: 1041–1046.

12.    Lee, M. S. and Song, K. Y. (2002). Effect of Nd substitution for the Ca site in the 110 K phase of (Bi , Pb)–Sr–Ca–Cu–O superconductors, Superconductor Science and Technology 15: 851–854.

 




Previous                    Content                    Next