Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 860 - 865

 

 

 

ISOLATION AND SCREENING OF THERMO-STABLE CELLULASE ENZYME FUNGAL PRODUCER AT DIFFERENT TEMPERATURE

 

(Pengasingan dan Saringan Enzim Selulosa Tahan Haba dari Kulat pada Suhu yang Berbeza)

 

Noor Ashiqin Jamroo1*, Noor Azrimi Umor1, Kamsani 2

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA Negeri Sembilan, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

 

*Corresponding author: noorashiqinjamroo@yahoo.com

 

 

Received: ; Accepted:

 

 

Abstract

Thermostable cellulase from fungi has high potential for industrial application. In this study, wild -type of fungal were isolate from different sources such as hot spring water, sea water, soft wood, rice straw and cow dung. The isolates were characterized by cultural and morphological observation. Based on morphological characteristics, the genera of all fungal cultures were identified namely Aspergillus fumigatus. The screening for thermostable cellulase were done using 2% carboxymethyl cellulose and congo red as an indicator at temperature 30˚C, 37˚C, 45˚C and 50˚C respectively. Out of 26 fungal isolates, only eight isolates were selected for further screening and showed the abilities to secrete cellulases by forming distinct halo zones on selective agar plate. The maximum halo zone ranging from 32mm to 35mm were obtained after 72 hour incubation at 50˚C by H2, SW1 and C1 isolates. As contrary other isolates showed halo zone range from 22 mm to 29 mm at same temperature. All the isolates showed the abilities to secrete cellulase enzyme at other temperature but lower when compared to 50˚C referred to the halo zone obtained. The SW1 isolates showed highest celluloytic index which was 2.93measured at 37 ˚C and 2.67 at 50˚C respectively.

 

Keywords: celluloytic index, isolation, screening, thermostable cellulose

 

Abstrak

Enzim selulosa tahan haba yang diperolehi daripada kulat sangat berpotensi untuk kegunaan industri. Di dalam kajian ini, kulat yang diperolehi adalah dari sumber  kolam air panas, air laut, kayu lembut, jerami padi dan juga dari najis lembu. Melalui pemerhatian, didapati kulat yang di kultur adalah dari genus Aspergillus fumigatus. Ujian dilakukan untuk memastikan bahawa kulat yang di kultur adalah dari yang tahan haba dengan menggunakan 2% selulosa dan congo red sebagai pewarna dan di kultur pada suhu yang berbeza iaitu 30˚C, 37˚C, 45˚C dan 50˚C. Daripada 26 kulat yang di kultur, hanya lapan kultur kulat yang telah dipilih untuk pemeriksaan lanjut dan menunjukkan kebolehan untuk merembeskan enzim selulosa dengan membentuk zon halo berbeza pada plat agar medium. Zon halo maksimum antara 32 mm hingga 35 mm telah diperolehi selepas 72 jam pengeraman di 50˚C oleh H2, SW1 dan C1 diasingkan. Seperti yang di perolehi  menunjukkan pelbagai zon halo dari 22 mm hingga 29 mm pada suhu yang sama. Semua kulat  menunjukkan kebolehan untuk merembeskan enzim selulosa pada suhu yang lain tetapi lebih rendah berbanding 50˚C yang disebut zon halo yang diperolehi. The SW1 menunjukkan indeks cellulolitik tertinggi iaitu 2.93 di ukur  pada suhu 37˚ C dan 2.67 di 50˚C masing-masing.

 

Kata kunci: indeks selulolitik, pengasingan, penapisan, selulosa tahan panas

 

References

1.       Ang, S. K., Shaza, E. M., Adibah, Y. , Suraini, A. A. and Madihah M. S (2013). Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochemistry 48: 1293–1302.

2.       Adesina, F. C. and Onilude, A. A. (2013). Isolation, identification and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. African Journal of Agricultural Research 8(34): 4414-4421.

3.       Krisana, A., Rutchadaporn, S., Jarupan, G., Lily, E., Sutipa, T. and  Kanyawim, K. (2005). Endo-1,4-β-xylanase from Aspergillus cf. niger BCC14405 isolated in Thailand: purification, characterization andgene isolation. J. Biochem. Mol. Biol 38:17-23.

4.       Dhillon, G. S., Brar, S. K., Verma, M. and Tyagi, R. D. (2010). Recent advances in citric acid bio-production and recovery. Food Bioprocessing Technology 47:353–357.

5.       Murray, P. R., Baron, E., Pfaller, M., Tenover, F. and Yolken, M. (Eds.). (1999). Manual of clinical microbiology (7th ed.). Washington: ASM Press: 1242–1258.

6.       Reetika, H.S.O and Kocher (2013).Selection of Thermophilic Fungi for Production of Cellulases Under Submerged and Solid-State Fermentation Conditions. Indian Journal of Applied Research 3(10):13-15.

 

7.       Maki. M., Leung K. T. and Qin W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences 5:500–516.

8.       Mandels, M. and Weber, J.(1969).The production of cellulases. Adv Chem Ser  95:391–414.

9.       Bakri, Y., Jawhar, M. and Arabi, M.I.E. (2008). Improvement of xylanase production by Cochliobolus sativus in solid state fermentation. Braz. J. Microbiol, 39: 602-614.

10.    Rahna, K. R., Nair, P. and Balasaravanan,  T. (2012). Isolation, Identification and Characterization of Efficient Cellulolytic Fungi from Natural Resources. International Journal of Microbial Resource Technology 1(4):379-387.

11.    Moretti, M. M. S., Bocchini-Martins, D. A., Da Silva, R., Rodrigues, A, Sette, L. D. and Gomes, E. (2012). Selection of thermophilic and thermotolerant fungi for the production ofcellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology 4: 1062-1071.

12.    Ten, L. N., Im, W. T., Kim, M. K., Kang, M. S. and Lee, S. T. (2004). Development of a plate technique for screening of polysaccharide- degrading microorganisms by using a mixture of insoluble chromogenic substrates. Journal of Microbiological Methods 6(3): 375–382.

13.    Khokhar, I., Haider, M. S., Mushtaq S. and Mukhtar I. (2012). Isolation and screening of highly cellulolytic filamentous fungi. Journal of Applied Sciences Environmental Management 16: 223-226.

14.    Teather, R. M. and Wood. P. J.  (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen.  Applied and Environmental Microbiology 43(4): 777–780.

15.    A. Sazci., A. Radford, and K. Erenler.(1986). Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Bacteriology 61(6): 559–562.

16.    Peterson. R., Grinyer, J., Joss, J., Khan, A. and Nevalainen, H. (2009). Fungal proteins with mannanase activity identified directly from a Congo Red stained zymogram by mass spectrometry. Journal of Microbiological Methods 79(3): 374–377.

17.    Rodriguez- Couto, S. and Sanroman, M. A. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Journal of Biochemical Engineering, 22: 211–219.

18.    Maheshwari, R., Bharadwaj, G. and Bath, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology Molecular Biology Review 64: 461-488.

19.    Leite, R. S. R., Alves-Prado, H. F., Cabral, H., Pagnocca, F. C., Gomes, E. and Da Silva, R. (2008). Production and characteristics comparison of crude β-glucosidase produced by microorganisms Thermoascus aurantiacus and Aureobasidium pullulans in agricultural wastes. Enzyme Microbial Technology 43: 391-395.

20.    Genansounou, E. (2010). Production and use of lignocellulosic bioethanol in Europe: current situation and perspective. Bioresource Technology 101: 4842 – 4850.

 




Previous                    Content                    Next