Malaysian Journal of Analytical Sciences Vol 19 No 4 (2015): 679 - 691

 

 

 

KESAN MINYAK SAWIT MERAH SEBAGAI PERENCAT KAKISAN TABII TERHADAP KELULI KARBON DAN KELULI LEMBUT DALAM 1 M ASID HIDROKLORIK (HCl)

 

(Effect of Red Palm Oil as a Natural Corrosion Inhibitor toward Carbon Steel and Mild Steel in 1 M of Hydrochloric Acid Solution)

 

Siti Rahimah Mohamad Shafiee1, Airul Ashri1, Muhammad Yusri Zulkafli2, Norinsan Kamil Othman2, Azwan Mat Lazim1*

 

1Program Sains Kimia, Pusat Pengajian Sains Kimia dan Teknologi Makanan,

 2Program Sains Bahan, Pusat Pengajia Fizik Gunaan,

Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: azwanlazim@ukm.edu.my

 

 

Received: 30 April 2015; Accepted: 29 June 2015

 

 

Abstrak

Penggunaan perencat kakisan tabii adalah sebagai satu alternatif kepada penggunaan perencat kakisan sintetik dan bukan organik. Pemilihan minyak sawit merah sebagai perencat kakisan tabii adalah kerana minyak tersebut kaya dengan molekul beta karoten dan vitamin E yang terkandung di dalam minyak tersebut mempunyai sifat anti-pengoksidaan yang tinggi. Selain itu, kehadiran heteroatom molekul dalam sebatian minyak sawit merah dapat memberikan penjerapan yang baik pada permukaan keluli dan seterusnya menghalang kakisan. Kajian ini dijalankan bagi mengkaji keberkesanan minyak sawit merah sebagai perencat kakisan tabii terhadap keluli lembut dan keluli karbon dalam media asid hidroklorik (HCl) berkepekatan 1 M. Tujuan utama kajian ini juga adalah untuk mengenalpasti kumpulan berfungsi dalam minyak sawit merah dan melakukan analisis morfologi permukaan keluli selepas direndam dalam larutan media berperencat dan larutan media tanpa perencat. Melalui ujian kehilangan berat dan kaedah polarasi Tafel, kedua-dua keluli mengalami penurunan kadar kakisan dan kecekapan perencat meningkat mengikut penambahan kepekatan minyak sawit merah. Berdasarkan kepada imej mikrograf Mikroskop Elektron Pengimbas (SEM) jelas menunjukkan kesan permukaan yang licin dan tidak berlubang apabila keluli direndam dalam larutan bersama perencat kakisan.Pencirian minyak sawit merah dengan menggunakan instrumen seperti Infra-Merah Transformasi Fourier (FTIR) dan Kromatografi Gas (GC) telah membuktikan kehadiran beberapa molekul heteroatom yang bertindak melakukan jerapan pada permukaan logam.

 

Kata kunci: minyak sawit merah, perencat kakisan, keluli karbon, keluli lembut

 

Abstract

The utilization of natural corrosion inhibitor is an alternative of the uses of synthetic corrosion inhibitors and non-organic inhibitors.The selection of red palm oil as a natural corrosion inhibitor is because the oil rich in beta-carotene molecules and vitamin E contains in the oil is high in antioxidant properties. Beside that, the presences of heteroatom molecules in red palm oil will give better adsorption on the surface of the steel and thus prevent corrosion. This research is carried out to investigate the effectiveness of using red palm oil as corrosion inhibitor for mild steel and carbon steel in 1 M hydrochloric acid solution. The aim of this research is to identify the functional group in the red palm oil and perform morphological analysis on the steel surface after being immersed in medium solution with inhibitor and medium solution without inhibitor. Based on weight loss and Tafel polarization method, both steels undergone the reduction in rate of corrosion and the efficiency of inhibitor increased with the addition of red palm oil. Based on the image captured by Scanning Electron Microscope, it is clearly showed that the surface of steel coated with red palm oil is less corroded compared to uncoated steel. The characterization of red palm oil using instruments such as Fourier Transform Infrared Spectrometer (FTIR) and Gas chromatography (GC) has prove the existence of a few heteroatom molecules that acts as an adsorbent on the surface of the steel.

 

Keywords: red palm oil, corrosion inhibitor, carbon steel, mild steel

 

References

1.       Neville, A., Reyes, M. & Xu, H.   (2002).   Examining Corrosion Effects and Corrosion/Erosion Interactions on Metallic Materials in Aqueous Slurries.  Tribology International,  35(10): 643-650.

2.       Fontana, M. G.   (2005).    Corrosion Engineering. Tata McGraw-Hill Education.

3.       Raja, P. B. & Sethuraman, M. G.   (2008).   Natural Products as Corrosion Inhibitor for Metals in Corrosive Media—a Review.  Materials Letters,  62(1): 113-116.

4.       Kulekci, M. K.   (2008).   Magnesium and Its Alloys Applications in Automotive Industry.  The International Journal of Advanced Manufacturing Technology,  39(9-10): 851-865.

5.       Blustein, G., Rodriguez, J., Romanogli, R. & Zinola, C. (2005).   Inhibition of Steel Corrosion by Calcium Benzoate Adsorption in Nitrate Solutions.  Corrosion science,  47(2): 369-383.

6.       Ebenso, E., Eddy, N. & Odiongenyi, A.   (2008).   Corrosion Inhibitive Properties and Adsorption Behaviour of Ethanol Extract of Piper Guinensis as a Green Corrosion Inhibitor for Mild Steel in H2SO4.  African Journal of Pure and Applied Chemistry,  2(11): 107-115.

7.       Stanish, K., Hooton, R. D. & Pantazopoulou, S. J.   (1999).   Corrosion Effects on Bond Strength in Reinforced Concrete.  ACI Structural Journal,  96(6): 915-921.

8.       Buchweishaija, J. & Mhinzi, G.   (2008).   Natural Products as a Source of Environmentally Friendly Corrosion Inhibitors: The Case of Gum Exudate from Acacia Seyal Var. Seyal.  Portugaliae Electrochimica Acta,  26(3): 257-265.

9.       Kesavan, D., Gopiraman, M. & Sulochana, N.   (2012).   Green Inhibitors for Corrosion of Metals: A Review.  Chem. Sci. Rev. Lett , 1(1): 1-8.

10.    Basiron, Y. & Weng, C. K.   (2004).   The Oil Palm and Its Sustainability.  Journal of Oil Palm Research,  16(1): 1-10.

11.    Quraishi, M., Ahmad, S. & Ansari, M.   (1997).   Inhibition of Steel Corrosion by Some New Triazole Derivatives in Boiling Hydrochloric Acid.  British Corrosion Journal,  32(4): 297-300.

12.    Amin, M. A., Shokry, H. & Mabrouk, E.   (2012).   Nickel Corrosion Inhibition in Sulfuric Acid-Electrochemical Studies, Morphologies, and Theoretical Approach.  Corrosion,  68(8): 699-712.

13.    Salimon, J. & Ahmed, W.A. (2012). Physicochemical Characteristics of Tropical Jatropha curcas Seed Oil. Sains Malaysiana, 41(3): 313–317.

14.    Dauqan, E. M., Sani, H. A., Abdullah, A. & Kasim, Z. M.   (2011).   Fatty Acids Composition of Four Different Vegetable Oils (Red Palm Olein, Palm Olein, Corn Oil and Coconut Oil) by Gas Chromatography. In 2nd International Conference on Chemistry and Chemical Engineering, Chengdu, China, hlm. 31-34.

15.    Asra Awizar, D., Othman, N. K., Daud, A. R., Jalar, A. & Zulkafli, R.   (2013).   The Performance of Nanosilicate from Rice Husk Ash as Green Corrosion Inhibitor for Carbon Steel in 0.5 M HCl.  Materials Science Forum, 756: 266-272.

16.    Zulkafli, M.Y., Othman, N.K., Lazim, A.M. & Jalar, A. (2013). Effect of Carboxylic Acid from Palm Kernel Oil for Corrosion Prevention. International Journal of Basic & Applied Sciences IJBAS-IJENS 13 (3): 29-32

17.    Stern, M. & Geary, A. L.   (1957).   Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves.  Journal of the Electrochemical Society,  104(1): 56-63.

18.    Bentiss, F., Lagrenee, M., Traisnel, M. & Hornez, J.   (1999).   The Corrosion Inhibition of Mild Steel in Acidic Media by a New Triazole Derivative.  Corrosion science,  41(4): 789-803.

19.    Rani, B.E.A. & Jasu, B.B.J. (2012). Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. International Journal of Corrosion, 2012:1-15.

20.    Mabrouk, E.M., Shokry, H. & Abu Al-Naja, K.M. (2011). Inhibition of Aluminium Corrosion In Acid Solution by Mono- and Bis-Azo Naphthylamine Dyes. Part 1. Chemistry of Metals and Alloys, 4(1-2): 98-106.

21.    Abdallah, M. (2004). Guar Gum as Corrosion Inhibitor for Carbon Steel in Sulphuric Acid Solutions. Portugaliae Electrochimica Acta, 22(2): 161–175.

22.    Raja, P.B. & Sethuraman, M.G. (2008). Natural Products as Corrosion Inhibitor for Metals in Corrosion Media. Materials Letters, 62(1): 113-116.

23.   Chen, Y., Wang, X., Li, J., Lu, J. & Wang, F.   (2007).   Long-Term Anticorrosion Behaviour of Polyaniline on Mild Steel.  Corrosion science,  49(7): 3052-3063.




Previous                    Content                    Next