Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1065 - 1071

 

 

 

RADIO FREQUENCY INTERFERENCE: THE EFFECT OF AMBIENT CARBON DIOXIDE (CO2) CONCENTRATION ON RADIO SIGNAL FOR RADIO ASTRONOMY PURPOSES

 

(Interferens Frekuensi Radio: Kesan Kepekatan Karbon Dioksida (CO2) Ambien ke atas Isyarat Radio Dalam Kajian Astronomi Radio)

 

Nor Hazmin Sabri1*, Sharifah Nurul Aisyah Syed Zafar2, Roslan Umar3,4, Wan Zul Adli Wan Mokhtar5

 

1School of Fundamental Science

2Physic, Electronic and Instrumentation Programme, School of Ocean Engineering

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

3East Coast Environmental Research Institute (ESERI)

4Faculty of Islamic Contemporary Studies

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia
5Department of Physics, Faculty of Science and Mathematics,

Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia

*Corresponding author: norhazmin@umt.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

Radio astronomy is a complementary to optical astronomy. Radio astronomy observation is conducted using large radio antennas referred to as radio telescopes, that are either used singularly, or with multiple linked telescopes utilizing the techniques of radio interferometry and aperture synthesis. In this study, weather factor that affected the Radio Frequency Interference (RFI) is investigated. An ambient carbon dioxide (CO2) concentration in the environment is determined to study the effect on radio signal up to 8GHz for radio astronomy purposes. The RFI pattern change against CO2 concentration is determined for one-hour observation time. The observations were conducted at KUSZA Observatory, East Coast Environmental Research Institute (ESERI) and UniSZA situated in Merang, Terengganu using spectrum analyser for RFI measurement and gas meter for CO2 concentration. The study findings found that for up to 600 ppm of CO2 concentration, there are no significant effect detected on radio signals. Thus, the radio astronomy observations may not affected. This study is very important for researchers in the radio astronomy field for determining the best location for radio telescope sitting for future research in radio astronomy.

 

Keywords: ambient carbon dioxide, radio signal, radio astronomy, radio frequency interference

 

Abstrak

Astronomi radio adalah pelengkap kepada astronomi optik. Cerapan astronomi radio dijalankan dengan menggunakan teleskop radio dengan piring yang besar yang dipanggil teleskop radio, yang mana ianya boleh digunakan secara sendirian atau secara gabungan beberapa teleskop radio dengan menggunakan teknik interferometry dan sintesis bukaan. Dalam kajian ini, faktor cuaca yang memberi kesan terhadap interferens frekuensi radio (RFI) diselidik. Kepekatan karbon dioksida (CO2) ambien dalam persekitaran ditentukan bagi mengkaji kesannya terhadap isyarat radio dalam julat sehingga 9GHz untuk tujuan kajian astronomi radio. Perubahan pola RFI terhadap perubahan kepekatan CO2 dikenalpasti bagi tempoh satu jam cerapan dibuat. Cerapan dibuat Balai Cerap KUSZA, Institut Penyelidikan Alam Sekitar Pantai Timur (ESERI) dan UniSZA yang terletak di Merang, Terengganu dengan menggunakan penganalisa spectrum untuk pengukuran RFI dan pengukur gas untuk kepekatan gas CO2. Hasil kajian mendapati, bagi kepekatan CO2 ambien sehingga 600 ppm, tiada kesan yang ketara dilihat terhadap isyarat radio. Oleh itu, cerapan astronomi radio tidak akan terganggu. Kajian ini sangat penting untuk pengkaji dari bidang astronomi radio bagi penentuan lokasi yang paling sesuai untuk meletakkan teleskop radio untuk kegunaan kajian akan dating dalam bidang astronomi radio.

 

Kata kunci: karbon dioksida, isyarat radio, astronomi radio, interferens frekuensi radio

 

References

1.       Cohen J, Spoelstra, T., Ambrosini, R. and van Driel, W. (2005). CRAF handbook for radio astronomy. European Science Foundation.

2.       John, A. (2013). Pyhsic Boundless Textbook: Chapter 23 Electromagnetic wave (online).  https://www.boundless.com/physics/textbooks/boundless-physics-textbook/electromagnetic-waves-23 [15 March 2014].

3.       Abidin, Z. Z., Ibrahim, Z. A., Rosli, Z., Malim, S. F. F., Anim, N. M. and Noorazlan, N. (2012).  An RFI Investigation for Setting Up a VLBI Station below 2.8 GHz in Malaysia. New Astronomy. 17: 61-64.

4.       Abidin, Z. Z., Umar, R., Ibrahim, Z. A., Rosli, Z., Asanok, K. and Gasiprong, N. (2013). Investigation on Frequency Allocation for Radio Astronomy at the L Band. Publications of the Astronomical Society of Australia (PASA) 30 : 47-57.

5.       Umar, R.  Abidin, Z. Z, Ibrahim, Z. A, Rosli, Z. and Noorazlan, Z. (2014).  Selection of radio astronomical observation sites and its dependence on human generated RFI., Research in Astronomy and Astrophysics 14: 241-248.

6.       Hamidi, Z. S, N. N. and Shariff, N. N. M. (2014).  Investigation of Radio Frequency Interference (RFI) Profile, and Determination of Potential Astronomical Radio Sources. International Letter of Chemistry, Physic and Astronomy 24: 43-49.

7.       United States Environmental Protection Agency (2015). Overview of Greenhouse Gases. Access Online http://www.epa.gov/climatechange/ghgemissions/gases/co2.html

8.       National Research Council, NRC (2010). Advancing the Science of Climate Change. National Research Council. The National Academies Press, Washington, DC, USA.

9.       MCMC manual of ‘Spectrum Plan, 2006 MCMC manual of ‘Spectrum Plan, Malysian Communication and Multimedia Commission’ 2006. Resources Assignment Management Department, Access Online: http://www.mcmc.gov.my/what_we_do/spectrum/plan.asp.

10.    Okhimamhe, A. A. and Okelola, O.F. (2013). Assesment of Carbon dioxide Emission at Road Junction in the Southes of Niger State, Nigeria, Alam Cipta, International Journal of Sustainable Tropical Design Research and Practice 6 (2): 59 – 71.

 

 




Previous                    Content                    Next