Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1099 - 1108

 

 

 

THE INFLUENCE OF TIDAL ACTIVITIES ON HYDROLOGIC VARIABLES OF MARANG RIVER, TERENGGANU, MALAYSIA

 

     (Pengaruh Aktiviti Pasang Surut bagi Pembolehubah Hidrologi di Sungai Marang,

Terengganu, Malaysia)

 

Mohd Ekhwan Toriman1,2, Muhammad Barzani Gasim1*, Nur Hidayah Ariffin1, Haniff Muhamad1,

Norsyuhada Hairoma1

 

1East Coast Environmental Research Institute (ESERI),

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

2School  of Social, Development and Environmental Studies, Faculty of Social Sciences and Humanities,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: drbarzani@gmail.com

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

A study was conducted at Marang River, Terengganu on determination of hydrological variation of Marang River at seven sampling stations. Sampling stations were selected along Marang River started from downstream to upstream. Each station was located 2km apart from each other. Sampling was done twice; the first sampling was in 13 November 2012 (rainy season) and was repeated for second sampling on 24 February 2013 (dry season). Hydrological measurements of river such as velocity, river width and river depth were measured by using specific equipment. River velocity was measured by using flow meter (model FP101), river width was measured by using a rangefinder (model Bushnell 20-0001) and river depth was measured by using depth meter. Primary data of hydrological measurements of Marang River were measured and analyzed for each sampling station. Overall, station 1 shows the highest readings for most hydrological variables at both water tides during the first and second samplings. Station 1 that was located at the Marang River estuary identified by higher hydrological variables due to seawater movement during high tide as compared to stations 7 which located at the upstream. During dry season hydrological variables were slightly decrease since low freshwater flow from the upstream due to less rainfall intensity.

 

Keywords: Marang River, hydrological variables, primary data, rainy and dry seasons

 

Abstrak

Satu kajian telah dijalankan di Sungai Marang, Terengganu  dalam penentuan pembolehubah hidrologi Sungai Marang di tujuh stesen pensampelan. Stesen pensampelan telah dipilih di sepanjang Sungai Marang bermula dari kawasan hilir ke hulu. Setiap stesen terletak 2km di antara satu dengan yang lain. Persampelan telah dilakukan sebanyak dua kali; pensampelan pertama adalah pada 13 November 2012 (musim hujan) dan diikuti persampelan kedua pada 24 Februari 2013 (musim kering). Pengukuran hidrologi sungai seperti halaju, lebar sungai dan kedalaman sungai diukur dengan menggunakan peralatan khas. Halaju sungai diukur dengan menggunakan meter alir (model FP101), lebar sungai diukur dengan menggunakan “rangefinder” (model Bushnell 20-0001) dan kedalaman sungai diukur dengan menggunakan rod meter. Data primer hasil daripada pengukuran hidrologi Sungai Marang diukur dan dianalisis untuk setiap stesen pensampelan. Hasilnya, stesen 1 menunjukkan bacaan tertinggi bagi kebanyakan pembolehubah hidrologi di kedua-dua keadaan pasang surut  dan semasa pensampelan pertama dan kedua. Stesen 1 yang terletak di muara Sungai Marang telah dikenal pasti mempunyai pembolehubah hidrologi yang tertinggi akibat pengaruh  pergerakan air pasang surut berbanding stesen 7 yang terletak di bahagian hulu. Semasa musim kering pembolehubah hidrologi sedikit berkurangan sebagai kesan aliran sungai dari hulu kerana kurangnya keamatan hujan.

 

Kata kunci: Sungai Marang, pembolehubah hidrologi, data primer, musim hujan dan kering

 

References

1.       Jamaludin, S., Jemain, A. A., Hamdan, M. F. and Zin, W. Z. W. (2011). Comparing rainfall patterns between regions in Peninsular Malaysia via afunctional data analysis technique. Journal of Hydrology 411: 197-206.

2.       Mannina, G. and Viviani, G. (2010). Water quality modelling for ephemeral rivers: model development and parameter assessment. Journal of Hydrology 393: 186-196.

3.       Ravenscroft, N. O. M. and Beardall, C. H. (2003). The importance of freshwater flows over estuarine mudflats for wintering waders and wildfowl. Journal of Biological Conservation 113(1): 89-97.

4.       Li, Y. P., Huang, G. H. and Nie, S. L. (2009). A robust interval-based minimax-regret analysis approach for the identification of optimal water-resources-allocation strategies under uncertainty. Journal of Resources, Conservation and Recycling 54(2): 86-96.

5.       Li, Y. P., Huang, G. H. and Nie, S. L. (2010). Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method. Journal of Advances in Water Resources 33(9): 1105-1117.

6.       Davies, E. G. R. and Simnovic, S. P. (2011). Global water resources modeling with an integrated model of the social economic-environmental system. Journal of Advances in Water Resources 34(6): 684-700.

7.       Kumar, P. K. D., Kumar, S. P., Roshin, R. P., Narvekar, J. and Vivekanandan, E. (2009). Response of the Arabian Sea to global warming and associated regional climateshift. Journal of Marine Environment 68: 217-222.

8.       Shaffril, H. A. M., Samah, B. A., D’Silva, J. L. and Uli. J.(2011). Global warming at the east coast zone of Peninsular Malaysia. Journal of Agricultural and Biological Sciences 6(3): 377-383.

9.       Wilby, R. L., Orr, H., Watts, G., Battarbee, R.W., Berry, P.M., Chadd, R., Dugdale, S.J., Elliott, J. A., Extence,C., Hannah, D. M., Holmes, N., Johnson, A. C., Knights, B.,Milner, N. J., Ormerod, S. J., Solomon, D., Timlett, R., Whitehead, P. J. and Wood, P. J. (2010). Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Journal of Science of the Total Environment 408(19): 4150-4164.

10.    Chang, S. W., Clement, T. P., Simpson, M. J. and Lee, K. K. (2011). Does sea-level rise have an impact on saltwater intrusion?. Journal of Advances in Water Resources 34(10): 1283-1291.

11.    Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ashtiani, B. A., Simmons, C. T. and Barry, D. A. (2012). Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources 51: 3-26.

12.    Tsimplis, M., Spada, G., Marcos, M. and Flemming, N. (2011). Multi-decadal sea level trends and land movements in the Mediterranean Sea with estimates of factors pertubing tide gauge data and cumulative uncertainties. Journal of Global and Planetary Change 76: 63-76.

13.    Meyssignac, B., Calafat, F. M., Somot, S., Rupolo, V., Stocchi, P., Llovel, W. and Cazenave, A. (2011). Two-dimensional reconstruction of the Mediterranean Sea level over 1970-2006 from tide gage data and regional ocean circulation model outputs. Journal of Global and Planetary Change 77(1-2): 49-61.

14.    Trisirisatayawong, I., Naieje, M., Simons, W. and Marc, L. F. (2011). Sea level change in the Gulf of Thailand from  GPS-corrected tide gauge data and multi-satellite altimetry. Journal of Global and Planetary Change 76(3-4): 137-151.

15.    Pickering, M. D., Wells, N. C., Horsburgh, K. J. and Green, J. A. M. (2012). The impact of future sea level rise on the European Shelf tides. Journal of Continental Shelf 35: 1-15.

16.    Boretti, A. (2012). Is there any support in the long term tide gauge data to the claims that parts of Sydney will be swamped by rising sea level?. Journal of Coastal Engineering 64: 161-167.

17.    Lombart, A., Cazenave, A., DoMinh, K., Cabanes, C. and Nerem, S. (2005). Thermosteric sea level rise for the past 50 years; comparison with tide gauges and inference on water mass contribution. Journal of Global and Planetary Change 48(4): 303-312.

 




Previous                    Content                    Next