Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1109 - 1119

 

 

 

ASSESSMENT OF WATER SALINITY MODEL USING HYDRODYNAMIC NUMERICAL MODELLING IN ESTUARY OF SELANGOR RIVER, MALAYSIA

 

(Penilaian Kemasinan Air Menggunakan Pemodelan Model Berangka Hidronamik

di Muara Sungai Selangor, Malaysia)

 

Mohd Ekhwan Toriman1,2*, Norbaya Hashim3, Mohd Khairul Amri Kamarudin1,4, Abdul Jalil Hassan4,

Muhammad Barzani Gasim1, Asyaari Muhamad1,5, Nor Azlina Abd Aziz1

 

1East Coast Environmental Research Institute (ESERI),

Universiti Sultan Zainal Abidin, 21300 Kuala Terengganu, Terengganu. Malaysia

2School  of Social, Development and Environmental Studies, Faculty of Social Sciences and Humanities,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Hydraulic Engineering Division,

National Hydraulic Research Institute of Malaysia (NAHRIM), 43300 Seri Kembangan, Selangor, Malaysia

4Faculty of Design Arts and Engineering Technology,

Universiti Sultan Zainal Abidin, 21300 Kuala Terenganu, Terengganu. Malaysia

5Institute of The Malay World and Civilisation (ATMA),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: ekhwantoriman@gmail.com

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

Issues such as water pollution and extraction of water from Sungai Selangor system has been said to be the cause of ‘fading fireflies’. Salinity intrusion into estuary of the Sungai Selangor has been carried out on a hydrodynamic numerical modeling to access the parameter that governed the amount of salt in the river. The berembang trees on the river bank that become the fireflies’ habitat need some amount of salt for proper growth. Living at the lower reaches of Sungai Selangor, the fireflies are affected not only by the activities in their vicinity, but by activities in the entire river basin. Rapid economic development in the basin and the strong demand for the water resources puts pressure on the ecosystem. This research has been carried out to investigate the effect of water extraction along Sungai Selangor towards altering the amount of salt content in the river. The hydrodynamic modeling with regards to the salt content is expected to support long term assessment that may affect the berembang trees as a result of changes in the flow from upstream because of the water abstraction activity for domestic water supply.

 

Keywords: hydrodynamic modeling, numerical modeling, water extraction, estuary, water salinity model

 

Abstrak

Isu-isu seperti pencemaran air dan pengeluaran air dari sistem Sungai Selangor telah dikatakan punca 'kelip-kelip pudar. Pencerobohan kemasinan ke muara Sungai Selangor telah dijalankan ke atas model berangka yang hidrodinamik untuk mengakses parameter yang dikawal jumlah garam dalam sungai. Pokok-pokok berembang di tebing sungai yang menjadi habitat kelip-kelip 'memerlukan jumlah garam untuk pertumbuhan. Hidup di muara Sungai Selangor, kelip-kelip terjejas bukan sahaja oleh aktiviti-aktiviti di sekitar mereka, tetapi oleh aktiviti di lembangan sungai keseluruhan. Pembangunan ekonomi yang pesat di lembangan dan permintaan yang kukuh untuk sumber air meletakkan tekanan ke atas ekosistem. Kajian ini telah dijalankan untuk mengkaji kesan pengambilan air di sepanjang Sungai Selangor ke arah mengubah jumlah kandungan garam di dalam sungai. Pemodelan hidrodinamik yang berkaitan dengan kandungan garam yang dijangka menyokong penilaian jangka panjang yang boleh memberi kesan kepada pokok berembang akibat daripada perubahan dalam aliran dari hulu kerana aktiviti abstraksi air untuk bekalan air domestik.

 

Kata kunci: model hidrodinamik, permodelan berangka, pengambilan air, muara, model kemasinan air

 

References

1.       Antonellini, M.,  P. Mollema, B. Giambastiani, K. Bishop,  L. Caruso,  A. Minchio, L., Pellegrini, M. Sabia, E.  Ulazzi, and G.  Gabbianelli, (2008). Saltwater intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeology Journal 16: 1541-1556.

2.       Arnell, N. W., (2004). Climate change and global water recourses: SRES emissions and socio-economic scenarios. Global Environmental Change 14: 31-52.

3.       Arnell, N.W., (1999). Climate change and global water resources, Global Environmental Change 9: 31–49.

4.       Smedt, F. D. (1989). Introduction to River Water Quality Modeling, VUB Press, Brussels. pp: 232.

5.       Ali, A., (1999). Climate change impact and adaptation assessment in Bangladesh, Climate Research 12: 109-116.

6.       Cartwright, N., L. Li., and P. Nielsen, (2004). Response of the salt-freshwater interface in a coastal aquifer to a wave-induced groundwater pulse: field observations and modelling, Advances in Water Resources 27: 297-303.

7.       Barlow, P. M. and Reichard, E. G., (2010). Saltwater intrusion in coastal regions of North America, Hydrogeology Journal 18: 247-260.

8.       Bobba, A. G., (2002). Numerical modeling of saltwater intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrogeological Sciences  Journal 47: 67-80.

9.       Abd. Jalil H. (2005). Permodelan Hidrodinamik Sungai-Pendekatan Awal Menggunakan Infoworks RS, Institut Penyelidikan Hidraulik Kebangsaan Malaysia. pp:153.

10.    Toriman, M. E, Hashim, N., Hassan, A. J., Mokhtar, M., Juahir, H., Gasim, M. B. and Abdullah, M. P. (2011). Study on the Impact of Tidal Effects on Water Quality Modelling of Juru River, Malaysia. Asian Journal of Scientific Research 4: 129-138.

11.    Jaafar, O., Toriman, M. E., Mastura, S. A. S., Gazim, M. B.  Lan, P. I., Abdullah, P.,  Kamarudin, M. K. A. and Aziz, N. A. (2010). Modeling the Impacts of Ringlet Reservoir on Downstream Hydraulic Capacity of Bertam River Using XPSWMM in Cameron Highlands, Malaysia. Research Journal of Applied Sciences 5(2): 47-53.

12.    Jaafar, O., Toriman, M. E., Mushrifah Idris, S.A. Sharifah Mastura, Juahir, H. Aziz, N. A. A., Kamarudin, M. K. A. and Jamil, N. R. (2010). Study of Water Level-Discharge Relationship Using Artificial Neural Network (ANN) in Sungai Gumum, Tasik Chini, Pahang, Malaysia. Research Journal of Applied Sciences 5(1): 20-26

13.    Church, J. A., White, N. J., Aarup, T., Wilson, W. S., Woodworth, P. L., Domingues, C. M.  Hunter, J. R. and Lambeck, K. (2008). Understanding global sea levels: past, present and future. Sustainability Science 3: 9-22.

14.    Dausman, A. M. and Langevin, C. D. (2005). Movement of the saltwater interface in the Surficial Aquifer System in response to hydrologic stresses and water- management practices, Broward County, Florida: USGS Scientific Investigation Report : 2004-5256.

15.    Pilkey, O. H., and Cooper, J. A. G. (2004). Society and sea level rise. Science 303: 1781-1782.

16.    Chen, X., Zong, Y., Zhang, E., Xu, J and Li, S. (2001). Human impacts on the Changjiang (Yangtze) River basin, China with special reference to the impacts of the dry season water discharges into the sea, Geomorphology 41: 111-123.

17.    Giambastiani B. M. S., Antonellini, M., Oude Essink, H. P. and Stuurman, R. J. (2007). Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): A numerical model, Journal of Hydrology 340: 91– 104.

18.    Post, V. and Abarca, E. (2010). Preface: saltwater and freshwater interactions in coastal aquifers, Hydrogeology Journal 18: 1-4.

19.    Werner, A. D. (2010). A review of seawater intrusion and its management in Australia, Hydrogeology Journal 18: 281-285. 

 




Previous                    Content                    Next