Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1120 - 1130

 

 

 

NUTRITIONAL TRANSITION PERIOD IN EARLY LARVAE CLARIAS GARIEPINUS

 

(Tempoh Peralihan Nutrisi di Peringkat Awal Larva Clarias gariepinus)

 

Nguang Siew Ing* and Ha Hou Chew

 

Faculty of Bioresources and Food Industry

Universiti Sultan Zainal Abidin,

Tembila Campus, 22200 Besut, Terengganu, Malaysia

 

*Corresponding author: nguangsiewing@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

The nutritional transition period of Clarias gariepinus were described based on the early development from hatching to 120 hours after hatching (hAH) reared at 27.5-28.6oC. Newly hatched larvae had a large greenish yolk sac volume (0.99+0.31 mm3) located below a straight undeveloped digestive tract, mouth not opened, eyes unpigmented and the larvae lie on the bottom of rearing tank. During endogenous feeding period, the larval feeding system has developed rapidly with development oesophagus. Yolk sac were not completely depleted at the onset of exogenous feeding (36 hAH, 0.19±0.11 mm3), and a period of mixed nutrition was observed up to 68 hAH when yolk was completely exhausted. Yolk sac volume was significantly different by time at hatching, 6, 12 and 18 to 36 hAH (ANOVA, P<0.05). At 36 hAH, the larvae commenced feeding once morphologically developed with opened anus, functional jaw and intestine, and demonstrated horizontally swimming. The rudimentary chemoreceptors like olfactory organs and taste buds that were found on the barbels and oral cavity assisted in food detection and commenced feeding without vision. Due to the cannibalistic behaviour at early stage, feed are suggested to be provided during 36 hAH and avoided delay feeding in the larval rearing.

 

Keywords: behaviour, Clarias gariepinus, early larval development, morphogenesis, nutritional transition period, sensory  organs

 

Abstrak

Tempoh transisi pemakanan Clarias gariepinus diterangkan berdasarkan perkembangan awal iaitu daripada peringkat penetasan sehingga 120 jam selepas penetasan (jST) di bawah ternakan pada suhu 27.5-28.6ᵒC. Larva-larva ikan yang baru menetas ini mempunyai yolk-sec besar (0.99+0.31 mm3) yang kehijauan dan terletak di bawah saluran pencernaan lurus yang belum berkembang, mulutnya tidak terbuka, matanya tidak berpigmen serta terbaring sahaja di bahagian bawah tangki ikan. Sepanjang tempoh pakan endogen, sistem pemakanan larva-larva ikan tersebut berkembang pesat dengan esofagusnya. Yolk-sec didapati tidak diserap sepenuhnya pada permulaan pakan eksogen (36 jST, 0.19 ± 0.11 mm3), dan tempoh pemakanan campuran ini diperhatikan berlansung sehingga 68 jST. Isipadu yolk-sec didapati berbeza secara ketara sebagaimana umur meningkat, iaitu pada peringkat penetasan, 6, 12 dan 18 hingga 36 jST (ANOVA, P <0.05). Pada 36 jST, larva-larva ikan diperhatikan bermula makan sebaik sahaja morfologinya berkembang di mana anus terbuka, rahang dan usus berfungsi, dan berenang secara horizontal. Reseptor kimia asas seperti organ olfaktori dan tunas rasa didapati pada sesungut dan rongga mulut larva-larva ikan membantunya mengesan makanan dalam air serta makan tanpa menggunakan penglihatan. Disebabkan oleh tingkahlaku karnibalistik pada peringkat awal, makanan larva-larva ikan ini dicadangkan agar diberi semasa 36 jST dan mengelakkan daripada kelewatan memberi makanan sepanjang penternakan ikan.

 

Kata kunci: tingkahlaku, Clarias gariepinus, perkembangan awal larva, morfogenesis, tempoh transisi pemakanan, organ deria

 

References

1.       Hogendoorn, H., Jansen, J. A. J., Koops, W. J., Machiels, M. A. M., van Ewijk, P. H. and van Hees, J. P. (1983). Growth and Production of the African Catfish, Clarias lazera (C&V). II. Effects of Body Weight, Temperature and Feeding Level in Intensive Tank Culture. Aquaculture 34: 265 - 285.

2.       Hecht, D. T. and Appelbaum, S. (1988). Observations on Intraspecific Aggression and Coeval Sibling Cannibalism by Larval and Juvenile Clarias gariepinus (Clariidae: Pisces) under Controlled Conditions. Journal of Zoology 214 (1): 21 – 44.

3.       Welcomme, R. L. (1988). International Introductions of Inland Aquatic Species. FAO Technical Paper No. 294. Fishery Resources and Environment Division FAO Fisheries Department, Rome. ISBN 92-5-102664-5: pp318.

4.       Graaf, G. and Janssen, H. (1996). Artificial Reproduction and Pond Rearing of the African Catfish Clarias gariepinus in Sub-Saharan Africa – A Handbook. FAO Fisheries Technical Paper. Rome, FAO. ISBN 9251039186: pp73.

5.       Appelbauma, S. and Kamler, E. (2000). Survival, Growth, Metabolism and Behaviour of Clarias gariepinus (Burchell 1822) Early Stages under Different Light Conditions. Aquacultural Engineering 22(4): 269 - 287.

6.       Sudarto, H. (2007). Systematic Revision and Phylogenetic Relationships among Populations of Clariid Species in Southeast Asia. PhD Thesis, University of Indonesia. pp 371.

7.       Hecht, T., Oellermann, L. and Verheust, L. (1996). Perspectives on Clariid Culture in Africa. Aquatic Living Resources, 9: 197 - 206.

8.       Verreth, J. A. J, Torreele, E., Spazier, E., der Sluiszen, A. V., Rombout, J. H. W. M., Booms, R. and Segner, H. (1992). The Development of A Functional Digestive System in the African Catfish Clarias gariepinus (Burchell). Journal of the World Aquaculture Society 23(4): 286 - 298.

9.       Conceição, L. E. C., Dersjant-Li, Y. and Verreth, J. A. J. (1998a). A first attempt to estimate protein turnover using a simulation model for amino acid metabolism in yolk-sac larvae of Clarias gariepinus (Burchell) and Hippoglossus hippoglossus (L.). ICES Marine Sciences Symposium 201: 80-86.

10.    Nguyen, L. T. H. and Janssen, C. R. (2002). Embryo-larval Toxicity Tests with the African Catfish (Clarias gariepinus): Comparative Sensitivity of Endpoints. Archives of Environmental Contamination and Toxicology 42(2): 256 - 262.

11.    Verreth, J. A. J., Eding, E. H., Rao, G. R. M., Huskens, F. and Segner, H. (2007). A Review of Feeding Practices, Growth and Nutritional Physiology in Larvae of the Catfishes Clarias gariepinus and Clarias batrachus. Journal of the World Aquaculture Society 24(2): 135 - 144.

12.    Øyvind, J. H., Puvanendran, V., Jrˇstensen, J. P. and Ous, C. (2011). Effects of Dietary Levels and Ratio of Phosphatidylcholine and Phosphatidylinositol on the Growth, Survival and Deformity Levels of Atlantic Cod Larvae and Early Juveniles. Aquaculture Research 42: 1026 – 1033.

13.    Blaxter, J. H. S. (1986). Development of Sense Organs and Behaviour of Teleost Larvae with Special Reference to Feeding and Predator Avoidance. Transactions of the American Fisheries Society 115(1): 98 - 114.

14.    Kawamura, G., Mori, H. and Kuwahara, A. (1989). Comparison of Sensory Organ Development in Wild and Reared Flounder Paralichthys olivaceus Larvae. Nippon Suisan Gakkaishi 55(12): 2079 - 2083.

15.    Mukai, Y., Tuzan, A. D., Lim, L. S., Siti Raehanah, M. S., Wahid, N. and Senoo, S. (2008). Development of Sensory Organ in Larvae of African Catfish Clarias gariepinus. Journal of Fish Biology 73(7): 1648 - 1661.

16.    Graaf, G. J., Galemoni, F. and Banzoussi, B. (1995). The Artificial Reproduction and Fingerling Production of the African Catfish Clarias gariepinus (Burchell 1822) in Protected and Unprotected Ponds. Aquaculture Research 26: 233 - 242.

17.    Kamler, E. (1992). Early Life History of Fish: An Energetics Approach. Chapman and Hall, London. ISBN 978-94-010-5026-5. 267 pp.

18.    Craig, J. F. (2008). Percid Fishes: Systematics, Ecology and Exploitation. John Wiley & Sons. ISBN 0-632-05616-9. 368 pp.

19.    Adebiyi, F. A., Siraj, S. S., Harmin, S. A. and Christianus, A. (2013). Embryonic and Larval Development of River Catfish, Hemubagrus nemurus (Valenciennes, 1840). Asian Journal of Animal and Veterinary Advances 8(2): 237 - 246.

20.    Cloutier, R., Souza, Browman, J. L. and Skiftesvik, H. I. (2011). Early Ontogeny of the Atlantic Halibut Hippoglossus hippoglossus Head. Journal of Fish Biology 78(4): 1035 - 1053.

21.    Hag, G. A. E., Kamarudin, M. S., Saad, C. R. and Daud, S. K. (2012).  Mouth Development of Malaysian River Catfish, Mystus nemurus (C&V) Larvae. Journal of American Science 8(1): 271 – 276.

22.    Blaxter, J. H. S. and Ehrlich, K. F. (1974). Changes in Behaviour during Starvation of Herring and Plaice Larvae. p. 575-588. In: The Early Life History of Fish. H. S. John Blaxter (eds.). Springer-Verlag, Berlin. pp768.

23.    Yufera, M. and Darias, M. J. (2007). The Onset of Exogenous Feeding in Marine Fish Larvae. Aquaculture 268: 53 - 63.

24.    Iguchi, K. and Mizuno, N. (1999). Early Starvation Limits Survival in Amphidromous Fishes. Journal of Fish Biology 54: 705 - 712.

25.    Sanderson, S. L. and Kupferberg, S. J. (1999). Development and Evolution of Aquatic Larval Feeding Mechanisms. p. 301-377. In The Origin and Evolution of Larval Forms. B. K. Hall and M. H. Wake (eds).  San Diego: Academic Press..

26.    Robert, D., Murphy, H. M., Jenkins, G. P. and Fortier, L. (2013). Poor Taxonomical Knowledge of Larval Fish Prey Preference is Impeding Our Ability to Assess the Existence of A “Critical Period” Driving Year-Class Strength. ICES Journal of Marine Science: 1-11.

27.    China, V. and Holzman, R. (2014). Hydrodynamic Starvation In First-Feeding Larval Fishes. Proceedings of the National Academy of Science of the United States of America 111(22): 8083 - 8088.

28.    Senoo, S., Ang, K. J. and Kawamura, G. (1994). Development of Sense Organ and Mouth and Feeding of Reared Marble Goby Oxyeleotris marmoratus Larvae. Fisheries Science 60(4): 361 - 368.

29.    Santos, J. E. and Godinho, H. P. (2002). Ontogenic Events and Swimming Behavior of Larvae of the Characid Fish Salminus Brasiliensis (Cuvier) (Characiformes, Characidae) under Laboratory Conditions. Rev. Bras. Zool. 19 (1): 163 - 171.

30.    Maciel, C. M. R. R., Lanna, E. A. T., Junior, A. M., Donzele, J. L., Neves, C. A. and Menin, E. (2010). Morphological and Behavioral Development of the Piracanjuba Larvae. Revista Brasileira de Zootecnia 39(5): 961 - 970.

31.    Pavlidis, M. and Mylonas, C. (2011). Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species. John Wiley & Sons. pp416.

32.    Yufera, M., Pascual, E. and Fernandez-Diaz, C. (1993). A Highly Efficient Microencapsulated Food for Rearing Early Larvae of Marine Fish. Aquaculture 177: 249 - 256.

33.    Mookerji, N. and Rao, T. R. (1999). Rates of Yolk Utilization and Effects of Delayed Initial Feeding in the Larvae of the Freshwater Fishes Rohu and Singhi. Aquaculture International 7: 45 - 56.

34.    Dou, S. Z., Masuada, R., Tanaka, M. & Tsukamoto, K. (2002). Feeding Resumption, Morphological Changes and Mortality during Starvation in Japanese Flounder Larvae. Journal Fish Biology 60: 1363 - 1380.

35.    Gisbert, E., Piedrahitac, R. H. and Conklinb, D. E. (2004). Ontogenetic Development of the Digestive System in California Halibut (Paralichthys californicus) with Notes on Feeding Practices. Aquaculture 232: 455 - 470.

36.    Conceição, L. E. C., Ozório, R. O. A., Suurd, E. A. and Verreth, J. A. J. (1998b). Amino Acid Profiles and Amino Acid Utilization in Larval African Catfish (Clarias gariepinus): Effects of Ontogeny and Temperature. Fish Physiology and Biochemistry 19(1): 43 - 58.

37.    Wellborn, T. L. (1988). Channel Catfish Life History and Biology. 87-CRSR-2-3218. Publication No. 180. Southern Regional Aquaculture Center. Texas Agricultural Extension Service, University of Florida. 4 pp.

38.    Peña, R., Dumas, S., Zavala-Leal, I. and Contreras-Olguı´n, M. (2014). Effect of Incubation Temperature on the Embryonic Development and Yolk-sac Larvae of the Pacific Red Snapper Lutjanus peru. Aquaculture Research 45: 519 - 527.

39.    Shan, X. J., Quan, H. F. and Dou, S. Z. (2009). Effects of Delayed First Feeding on Growth and Survival of Rock Bream Oplegnathus fasciatus Larvae. Aquaculture 277: 14 - 23.

40.    Yin, M. C. and Blaxter, J. H. S. (1987). Escape Speeds of Marine Fish Larvae during Early Development and Starvation. Marine Biology 96: 459 - 468.

41.    Smith, C. and Reay, P. (1991). Cannibalism in Teleost Fish. Reviews in Fish Biology and Fisheries, 1: 41 - 64.

42.    Mukai, Y., Sanudin, N., Firdaus R. F. and Saad, S. (2011). Reduced Cannibalistic Behavior of African Catfish, Clarias gariepinus, Larvae under Dark and Dim Conditions. Zoology Science 30(6): 421 - 424.

43.    Abdelhamid, A. M., Radwan, I. A., Mehrim, A. I. and Abdelhamid, A. F. B. (2010). Improving the Survival Rate of African Catfish, Clarias gariepinus. Journal Animal and Poultry Production 1(9): 409 - 414.

44.    Mukai, Y. & Lim, L. S. (2011). Larval Rearing and Feeding Behaviour of Africa Catfish, Clarias gariepinus under Dark Conditions. Journal of Fisheries and Aquatic Science 6(3): 272 - 278.

 

 




Previous                    Content                    Next