Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 966 - 978

 

 

 

AIR QUALITY PATTERN ASSESSMENT IN MALAYSIA USING MULTIVARIATE TECHNIQUES

 

(Penilaian Corak Kualiti Udara di Malaysia Menggunakan Teknik Multivariat)

 

Hamza Ahmad Isiyaka and  Azman Azid*

 

East Coast Environmental Research Institute (ESERI),

Universiti Sultan Zainal Abidin,

Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: azmanazid@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

This study aims to investigate the spatial characteristics in the pattern of air quality monitoring sites, identify the most discriminating parameters contributing to air pollution, and predict the level of air pollution index (API) in Malaysia using multivariate techniques. Five parameters observed for five years (2000-2004) were used. Hierarchical agglomerative cluster analysis classified the five air quality monitoring sites into two independent groups based on the characteristics of activities in the monitoring stations. Discriminate analysis for standard, backward stepwise and forward stepwise mode gave a correct assignation of more than 87% in the confusion matrix. This result indicates that only three parameters (PM10, SO2 and NO2) with a p<0.0001 discriminate best in polluting the air. The major possible sources of air pollution were identified using principal component analysis that account for more than 58% and 60% in the total variance. Based on the findings, anthropogenic activities (vehicular emission, industrial activities, construction sites, bush burning) have a strong influence in the source of air pollution. Furthermore, artificial neural network (ANN) was used to predict the level of air pollution index at R2 = 0.8493 and RMSE = 5.9184. This indicates that ANN can predict more than 84% of the API.

 

Keywords: multivariate techniques, principal component analysis, artificial neural network, air pollution index

 

Abstrak

Kajian ini adalah bertujuan untuk menyiasat ciri-ciri spatial dalam pemantauan corak kualiti udara, mengenal pasti parameter yang menjadi penyumbang kepada pencemaran udara, dan meramalkan tahap indeks pencemaran udara (IPU) di Malaysia menggunakan teknik multivariat. Lima parameter udara bagi lima tahun (2000-2004) telah digunakan. Hirarki algorithma analisa kelompok telah mengkelaskan lima tapak pemantauan kualiti udara kepada dua kumpulan berdasarkan ciri-ciri aktiviti di stesen pemantauan. Analisis pembezalayan bagi kaedah standard, langkah demi langkah ke belakang dan langkah demi langkah ke hadapan memberikan peratusan yang dibenar lebih daripada 87% dalam matriks kekeliruan. Keputusan ini menunjukkan bahawa hanya tiga parameter (PM10, SO2 dan NO2) dengan p<0,0001 memberikan pembezalayan yang baik dalam pencemaran di udara. Sumber utama kemungkinan pencemaran udara telah dikenal pasti menggunakan analisis komponen utama yang menyumbang lebih daripada 58% dan 60% dalam jumlah varians. Berdasarkan hasil kajian, aktiviti antropogenik (pelepasan kenderaan, aktiviti perindustrian, tapak pembinaan, pembakaran belukar) mempunyai pengaruh yang kuat dalam sumber pencemaran udara. Tambahan pula, rangkaian neural buatan (RNB) telah digunakan untuk meramal tahap indeks pencemaran udara dengan nilai R2 = 0.8493 dan RMSE = 5.9184. Ini menunjukkan bahawa RNB boleh meramalkan IPU lebih daripada 84%.

 

Kata kunci: teknik multivariate, analisis komponen utama, rangkaian neural buatan, indeks pencemaran udara

 

References

1.       Yazdanpanah, H., Karimi, M. and Hejazizadeh, Z.  (2009). Forecasting of daily total atmospheric ozone in Isfahan Environmental Monitoring Assessment 157:235–241.

2.       Botkin, D. B., Keller, E. A., and Rosenthal, D. B. (2012). Environmental Science. Wiley.

3.       Brunekreef, B. and Holgate, S. T. (2002). Air pollution and health. The lancet 360 (9341): 1233-1242.

4.       World Health Organization (2002). World Health Report: Reducing Risk, Promoting Healthy Life. Geneva, Switzerland.

5.       Jacobson, M. Z. (2002). Atmospheric pollution: history, science, and regulation. Cambridge University Press.

6.       Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Nel, A., Peden, D. and Williams, P. B. (2004). Health effects of air pollution. Journal of Allergy and Clinical Immunology 114(5): 1116-1123.

7.       De-Souza, A., Aristones, F., Pavão, H. G., and Fernandes, W. A. (2014). Development of a Short-Term Ozone Prediction Tool in Campo Grande-MS-Brazil Area Based on Meteorological Variables. Open Journal of Air Pollution 3(02): 42-51.

8.       Ramanathan, V. and Feng, Y. (2009). Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment 43(1): 37-50.

9.       Department of Environment Malaysia (DOE) (2007). Malaysia Environmental Quality Report, Ministry of Science, Technology and Environment, Kuala Lumpur.

10.    Zell, H., Quarcoo, D., Scutaru, C., Vitzthum, K., Uibel, S., Schöffel, N. Mache, S., Groneberg, D.A and Spallek, M. F. (2010). Research Air pollution research: visualization of research activity using density-equalizing mapping and scientometric benchmarking procedures. Journal of Occupational Medicine and Toxicology 5(5): 1-9.

11.    Turalıoğlu, F. S., Nuhoğlu, A. and Bayraktar, H. (2005). Impacts of some meteorological parameters on SO2 and TSP concentrations in Erzurum, Turkey. Chemosphere 59(11): 1633-1642.

12.    Ballester, F., Llop, S., Estarlich, M., Esplugues, A., Rebagliato, M. and Iñiguez, C. (2010). Preterm birth and exposure to air pollutants during pregnancy. Environmental Research 110(8):778-785.

13.    Ilyas, S. Z., Khattak, A. I., Nasir, S. M., Qurashi, T. and Durrani, R. (2010). Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy 12(3): 291-299.

14.    MacNee, W. and Donaldson, K. (2003). Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. European Respiratory Journal 21(40): 47s-51s.

15.    Department of Environment Malaysia (DOE) (1997). A Guide to Air Pollution Index In Malaysia (API). Ministry of Science, Technology and Environment, Kuala Lumpur.

16.    Dominick, D., Juahir, H., Latif, M. T., Zain, S. M., & Aris, A. Z. (2012). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172-181.

17.    Department of Environment Malaysia (DOE) (2012). Malaysia Environmental Quality Report, Ministry of Science, Technology and Environment, Kuala Lumpur.

18.    Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., Zain, S. M. and Dominick,D., (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia. Environmental Science, Processes & Impacts 15(9): 1717-1728.

19.    Wu, E.M. and Kuo, S. (2013). A study of the use of a statistical analysis model to monitor air pollution status in an air quality-total control district. Atmosphere 4: 349-364

20.    Samsudin, M. S., Juahir, H., Zain, S. M. and Adnan, N. H. (2011). Surface river water quality interpretation using environmetric techniques: Case study at Perlis River Basin, Malaysia. International Journal of Environmental Protection 1(5): 1-8.

21.    Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E. and Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment 173(1-4): 625-641.

22.    Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I., & Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental Monitoring And Assessment 184(11), 6735-6748.

23.    Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment 38(18), 2895-2907.

24.    Azid, A., Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A. S. M., Hasnam, C. N. C., Abdul Aziz, N. A., Azaman, F., Latif, M. T., Zainuddin, S. F. M., Osman, M. R. and Yamin, M. (2014). Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: a Case Study in Malaysia. Water, Air, & Soil Pollution, 225(8): 2063 – 2077.  

25.    Farmaki, E. G, Thomaidis, N. S, Simeonov, V. and Efstathiou, C. E. (2012). A comparative chemometric study for water quality expertise of the Athenian water reservoirs Environmental Monitoring Assessment 184:7635 – 7652.

26.    Zhang, X., Jiang, H. and Zhang, Y. (2013). Spatial distribution and source identification of persistent pollutants in marine sediments of Hong Kong. Environmental Monitoring Assessment 185: 4693-4704.

27.    Lau, J., Hung, W.T. and Cheung, C.S. (2009). Interpretation of air quality in relation to monitoring station’s surrounding. Atmospheric Environmetric 43: 769-777

28.    Singh, K. P., Malik, A., Mohan, D. and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18): 3980-3992.

29.    Singh, K.P., Malik, A. and Sinha, S. (2005) Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques a case study.  Analytica Chimica Acta 538: 355-374.

30.    Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan.  Environmental Modelling & Software 22(4): 464-475.

31.    Pati, S., Dash, M. K., Mukherjee, C. K., Dash, B. and Pokhrel, S. (2014). Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environmental Monitoring and Assessment 186(10): 6385-6402.

32.    Brūmelis, G., Lapiņa, L., Nikodemus, O. and Tabors, G. (2000). Use of an artificial model of monitoring data to aid interpretation of principal component analysis. Environmental Modelling & Software 15(8):755-763.

33.    Love, D., Hallbauer, D., Amos, A. and Hranova, R. (2004). Factor analysis as a tool in groundwater quality management: two southern African case studies. Physics and Chemistry of the Earth, Parts A/B/C 29(15): 1135-1143.

34.    Vega, M., Pardo, R., Barrado, E. and Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12): 3581-3592.

35.    Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. and Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research 34(3): 807-816.

36.    Liu, C. W., Lin, K. H. and Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment 313(1): 77-89.

37.    Hakimpoor, H., Arshad, K. A. B., Tat, H. H., Khani, N. and Rahmandoust, M. (2011). Artificial neural networks’ applications in management. World Applied Sciences Journal 14 (7): 1008-1019.

38.    Moustris, K. P., Larissi, I. K., Nastos, P. T., Koukouletsos, K. V. and Paliatsos, A. G. (2013). Development and Application of Artificial Neural Network Modeling in Forecasting PM10 Levels in a Mediterranean City. Water, Air, & Soil Pollution 224(8):1-11.

39.    Dongare, A. D., Kharde, R. R. and Kachare, A. D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT) 2: 189-194.

40.    Arhami, M., Kamali, N. and Rajabi, M. M. (2013). Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environmental Science and Pollution Research 20(7), 4777-4789.

41.    Juahir, H., Zain, S., Md., Aris A.Z., Mazlin, M., K. Y. and Mokhtar, B. (2009). Spatial assessment of Langat river Water quality using chemometrics. Journal of Environmental Monitoring 12: 287–295.

42.    Sarkar, A. and Kumar, R. (2012). Artificial Neural Networks for Event Based Rainfall-Runoff Modeling. Journal of Water Resource and Protection 4(10): 891-897.

43.    Department of Environment Malaysia (DOE) (2009). Malaysia Environmental Quality Report, Ministry of Science, Technology and Environment, Kuala Lumpur.

44.    Department of Statistic Malaysia (DOS) (2010). Basic Population Characteristics by Administrative Districts 2009 Report.

45.    Department of Environment Malaysia (DOE) (2010). Malaysia Environmental Quality Report, Ministry of Science, Technology and Environment, Kuala Lumpur.

46.    Banan, N., Latif, M. T., Juneng, L. and Ahamad, F. (2013). Characteristics of surface ozone concentrations at stations with different backgrounds in the Malaysian Peninsula. Aerosol and Air Quality Research 13(3): 1090-1106.

47.    Sadanaga, Y., Sengen, M., Takenaka, N. and Bandow, H. (2012). Analyses of the ozone weekend effect in Tokyo, Japan: regime of oxidant (O3+ NO2) production. Aerosol Air Quality Research 12: 161-168.

48.    Abdullah, A. M., Abu Samah, M. A., and Jun, T. Y. (2012). An overview of the air pollution trend in Klang Valley, Malaysia. Open Environ Science 6:13-19.

49.    Sara, Y. Y., Rashid, M., Chuah, T. G., Suhaimi, M. and Mohamed, N. N. (2013). Characteristics of Airborne PM2.5 and PM2.5-10 in the Urban Environment of Kuala Lumpur. In Advanced Materials Research 620: 502-510.

50.    Brunekreef, B. and Holgate, S. T. (2002). Air pollution and health. The Lancet 360(9341):1233-1242.

 

 

 




Previous                    Content                    Next