Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 742 - 749
DOI:
10.17576/mjas-2018-2205-01
SYNTHESIS
OF 2-AMINOBIARYL DERIVATIVES PROMOTED BY WATER EXTRACT OF ONION PEEL ASH
(Sintesis Terbitan 2-Aminobiaril Dimangkinkan oleh Ekstrak
Air Abu Kulit Bawang)
Poh Wai Chia1,2*,
Poh Seng Chee1, Siti Nur Aqlili Riana Mohd Asseri1,
Fu Siong Julius Yong2, Su-Yin Kan3
1School of Marine and Environmental Sciences
2Institute of Marine Biotechnology
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Faculty of Health Sciences,
Universiti
Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: pohwai@umt.edu.my
Received: 17
March 2018; Accepted: 2 July 2018
Abstract
The biaryl and its derivatives are
important organic compounds that possess various interesting applications, such
as in the field of medicine, organic-light emitting materials, agrochemicals
and other functional properties. Traditionally, radical arylation of
arylhydrazines and anilines requires the use of metals, excess of base,
flammable solvent and so on. Thus, a greener catalytic system for the synthesis
of 2-aminobiaryls is highly sought after. In this work, a recyclable catalytic
media has been developed for the synthesis of 2-aminobiaryl derivatives via a
direct arylation of anilines with arylhydrazines in the presence of water
extract of the burned-ash of onion peel waste (ash-water extract). This method
provides numerous advantages, such as external base- and metal-free, recyclable
catalytic system, inexpensive and the products were achieved in moderate to
good yield. This sustainable synthesis is scientifically important, as it is
capable of minimizing the use of toxic reagents and at the same time offers an
alternative method to manage the abundant bio-waste.
Keywords: ash-water extract, 2-aminobiaryls, recyclable
catalytic system, arylhydrazine, aniline
Abstrak
Biaril dan
derivatifnya adalah sebatian organik yang penting dan didapati memiliki
pelbagai aplikasi menarik, seperti dalam bidang perubatan, bahan pemancar
cahaya organik, agrokimia dan sifat-sifat lain. Secara tradisional, arilasi
radikal yang melibatkan arilhidrazin dan anilin memerlukan penggunaan logam,
bes lebihan, pelarut mudah terbakar dan sebagainya. Oleh itu, sistem pemangkin yang lebih hijau
untuk sintesis 2-aminobiaril sangat diperlukan. Dalam kerja ini, media
pemangkin yang boleh dikitar semula telah dibangunkan untuk sintesis terbitan
2-aminobiaril melalui arilasi anilin dengan arilhidrazin dalam kehadiran
ekstrak air abu bawang merah (ekstrak air-abu). Kaedah ini memberi pelbagai
kelebihan termasuk mengelakkan penggunaan bes luaran, bebas logam, sistem
pemangkin yang boleh dikitar semula, murah dan kuantiti produk yang dihasilkan
dalam lingkungan sederhana hingga baik. Sintesis lestari ini adalah penting
secara saintifik, kerana ia mampu meminimalkan penggunaan reagen beracun dan
pada masa yang sama menawarkan satu kaedah alternatif untuk menguruskan sisa
biologi.
Kata
kunci: ekstrak air-abu, 2-aminobiaril, media pemangkin boleh kitar semula,
arilhidrazin, anilin
References
1.
Polshettiwar, V., Luque, R., Fihri, A., Zhu, H.,
Bouhrara, M. and Basset, J.-M. (2011). Magnetically recoverable nanocatalysts. Chemical Review, 111(5): 3036-3075.
2.
Simon, M.-O. and Li, C.-J. (2012). Green chemistry oriented
organic synthesis in water. Chemical Society
Review, 41(4): 1415-1427.
3.
Waseem, M. A., Srivastava, A., Srivastava, A. and Siddiqui,
I. (2015). Water and ionic liquid synergy: A novel approach for the synthesis
of benzothiazole-2 (3H)-one. Journal of
Saudi Chemical Society, 19(3): 334-339.
4.
Li, C.-J. and Chen, L. (2006). Organic chemistry in water. Chemical Society Review, 35(1): 68-82.
5.
Wagare, D. S., Netankar, P. D., Shaikh, M., Farooqui, M. and
Durrani, A. (2017). Highly efficient microwave-assisted one-pot synthesis of
4-aryl-2-aminothiazoles in aqueous medium. Environmental
Chemistry Letters, 15(3): 475-479.
6.
Noshiranzadeh, N., Emami, M., Bikas, R. and Kozakiewicz, A.
(2017). Green click synthesis of β-hydroxy-1, 2, 3-triazoles in water in the
presence of a Cu (II)–azide catalyst: a new function for Cu (II)–azide
complexes. New Journal of Chemistry, 41(7):
2658-2667.
7.
Banerjee, B. (2017). Recent developments on ultrasound
assisted catalyst-free organic synthesis. Ultrasonics
Sonochemistry, 35(2017): 1-14.
8.
Miklós, F. and Fülöp, F. (2016). A simple green protocol for
the condensation of anthranilic hydrazide with cyclohexanone and n‐benzylpiperidinone in water. Journal of Heterocyclic Chemistry, 53(1): 32-37.
9.
Yang, Y., Bao, Y., Guan, Q., Sun, Q., Zha, Z. and Wang, Z.
(2017). Copper-catalyzed S-methylation of sulfonyl hydrazides with TBHP for the
synthesis of methyl sulfones in water. Green
Chemistry, 19(1): 112-116.
10.
Sarmah, M., Mondal, M. and Bora, U. (2017). Agro‐waste extract based solvents: emergence of novel green
solvent for the design of sustainable processes in catalysis and organic
chemistry. ChemistrySelect, 2(18): 5180-5188.
11.
RekhaáBoruah, P. and AzizáAli, A. (2015). Pd (OAc) 2 in
WERSA: a novel green catalytic system for Suzuki–Miyaura cross-coupling
reactions at room temperature. Chemical
Communications, 51(57): 11489-11492.
12.
Dewan, A., Sarmah, M., Bora, U. and Thakur, A. J. (2016). A
green protocol for ligand, copper and base free Sonogashira cross-coupling
reaction. Tetrahedron Letters, 57(33):
3760-3763.
13.
Bagul, S. D., Rajput, J. D. and Bendre, R. S. (2017).
Synthesis of 3-carboxycoumarins at room temperature in water extract of banana
peels. Environmental Chemistry Letters,
15(4): 725-731.
14.
Surneni, N., Barua, N. C. and Saikia, B. (2016). Application of
natural feedstock extract: The Henry reaction. Tetrahedron Letters, 57(25): 2814-2817.
15.
Saikia, B. and Borah, P. (2015). A new avenue to the Dakin
reaction in H2O2–WERSA. RSC Advances, 5(128):
105583-105586.
16.
Choi, I. S., Cho, E. J., Moon, J.-H. and Bae, H.-J. (2015).
Onion skin waste as a valorization resource for the by-products quercetin and
biosugar. Food Chemistry, 188: 537-542.
17.
Marshall, R. E. and Farahbakhsh, K. (2013). Systems
approaches to integrated solid waste management in developing countries. Waste Managment, 33(4): 988-1003.
18.
Nile, S. H. and Park, S. W. (2013). Total phenolics,
antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Frontier in Life Science, 7(3-4): 224-228.
19.
Sharma, K., Mahato, N., Nile, S. H., Lee, E. T. and Lee, Y.
R. (2016). Economical and environmentally-friendly approaches for usage of
onion (Allium cepa L.) waste. Food & Function, 7(8): 3354-3369.
20.
Gao, S., Li, L., Geng, K., Wei, X. and Zhang, S. (2015).
Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon
as an efficient catalyst for oxygen reduction reaction. Nano Energy, 16: 408-418.
21.
Costantino, L. and Barlocco, D. (2006). Privileged structures
as leads in medicinal chemistry. Current
Medicinal Chemistry, 13(1): 65-85.
22.
Jiang, H., Sun, J. and Zhang, J. (2012). A review on
synthesis of carbazole-based chromophores as organic light-emitting materials. Current Organic Chemistry, 16(17):
2014-2025.
23.
McGlacken, G. P. and Bateman, L. M. (2009). Recent advances
in aryl–aryl bond formation by direct arylation. Chemical Society Review, 38(8): 2447-2464.
24.
Jiang, T., Chen, S.-Y., Zhang, G.-Y., Zeng, R.-S. and Zou,
J.-P. (2014). CoPc-catalyzed selective radical arylation of anilines with
arylhydrazines for synthesis of 2-aminobiaryls. Organic & Biomolecular Chemistry, 12(35): 6922-6926.
25.
Jiang, T., Chen, S.-Y., Zhuang, H., Zeng, R.-S. and Zou,
J.-P. (2014). Air-promoted direct radical arylation of anilines with
arylhydrazines. Tetrahedron Letters,
55(33): 4549-4552.
26.
Chen, Z.-X. and Wang, G.-W. (2005). One-pot sequential
synthesis of acetoxylated [60] fullerene derivatives. Journal of Organic Chemistry, 70(6): 2380-2383.