Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 742 - 749

DOI: 10.17576/mjas-2018-2205-01

 

 

 

SYNTHESIS OF 2-AMINOBIARYL DERIVATIVES PROMOTED BY WATER EXTRACT OF ONION PEEL ASH 

 

(Sintesis Terbitan 2-Aminobiaril Dimangkinkan oleh Ekstrak Air Abu Kulit Bawang)

 

Poh Wai Chia1,2*, Poh Seng Chee1, Siti Nur Aqlili Riana Mohd Asseri1, Fu Siong Julius Yong2, Su-Yin Kan3

 

1School of Marine and Environmental Sciences

2Institute of Marine Biotechnology

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Health Sciences,

Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  pohwai@umt.edu.my

 

 

Received: 17 March 2018; Accepted: 2 July 2018

 

 

Abstract

The biaryl and its derivatives are important organic compounds that possess various interesting applications, such as in the field of medicine, organic-light emitting materials, agrochemicals and other functional properties. Traditionally, radical arylation of arylhydrazines and anilines requires the use of metals, excess of base, flammable solvent and so on. Thus, a greener catalytic system for the synthesis of 2-aminobiaryls is highly sought after. In this work, a recyclable catalytic media has been developed for the synthesis of 2-aminobiaryl derivatives via a direct arylation of anilines with arylhydrazines in the presence of water extract of the burned-ash of onion peel waste (ash-water extract). This method provides numerous advantages, such as external base- and metal-free, recyclable catalytic system, inexpensive and the products were achieved in moderate to good yield. This sustainable synthesis is scientifically important, as it is capable of minimizing the use of toxic reagents and at the same time offers an alternative method to manage the abundant bio-waste.

 

Keywords:  ash-water extract, 2-aminobiaryls, recyclable catalytic system, arylhydrazine, aniline

 

Abstrak

Biaril dan derivatifnya adalah sebatian organik yang penting dan didapati memiliki pelbagai aplikasi menarik, seperti dalam bidang perubatan, bahan pemancar cahaya organik, agrokimia dan sifat-sifat lain. Secara tradisional, arilasi radikal yang melibatkan arilhidrazin dan anilin memerlukan penggunaan logam, bes lebihan, pelarut mudah terbakar dan sebagainya.  Oleh itu, sistem pemangkin yang lebih hijau untuk sintesis 2-aminobiaril sangat diperlukan. Dalam kerja ini, media pemangkin yang boleh dikitar semula telah dibangunkan untuk sintesis terbitan 2-aminobiaril melalui arilasi anilin dengan arilhidrazin dalam kehadiran ekstrak air abu bawang merah (ekstrak air-abu). Kaedah ini memberi pelbagai kelebihan termasuk mengelakkan penggunaan bes luaran, bebas logam, sistem pemangkin yang boleh dikitar semula, murah dan kuantiti produk yang dihasilkan dalam lingkungan sederhana hingga baik. Sintesis lestari ini adalah penting secara saintifik, kerana ia mampu meminimalkan penggunaan reagen beracun dan pada masa yang sama menawarkan satu kaedah alternatif untuk menguruskan sisa biologi.

 

Kata kunci:  ekstrak air-abu, 2-aminobiaril, media pemangkin boleh kitar semula, arilhidrazin, anilin

 

References

1.          Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M. and Basset, J.-M. (2011). Magnetically recoverable nanocatalysts. Chemical Review, 111(5): 3036-3075.

2.          Simon, M.-O. and Li, C.-J. (2012). Green chemistry oriented organic synthesis in water. Chemical Society Review, 41(4): 1415-1427.

3.          Waseem, M. A., Srivastava, A., Srivastava, A. and Siddiqui, I. (2015). Water and ionic liquid synergy: A novel approach for the synthesis of benzothiazole-2 (3H)-one. Journal of Saudi Chemical Society, 19(3): 334-339.

4.          Li, C.-J. and Chen, L. (2006). Organic chemistry in water. Chemical Society Review, 35(1): 68-82.

5.          Wagare, D. S., Netankar, P. D., Shaikh, M., Farooqui, M. and Durrani, A. (2017). Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environmental Chemistry Letters, 15(3): 475-479.

6.          Noshiranzadeh, N., Emami, M., Bikas, R. and Kozakiewicz, A. (2017). Green click synthesis of β-hydroxy-1, 2, 3-triazoles in water in the presence of a Cu (II)–azide catalyst: a new function for Cu (II)–azide complexes. New Journal of Chemistry, 41(7): 2658-2667.

7.          Banerjee, B. (2017). Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrasonics Sonochemistry, 35(2017): 1-14.

8.          Miklós, F. and Fülöp, F. (2016). A simple green protocol for the condensation of anthranilic hydrazide with cyclohexanone and nbenzylpiperidinone in water. Journal of Heterocyclic Chemistry, 53(1): 32-37.

9.          Yang, Y., Bao, Y., Guan, Q., Sun, Q., Zha, Z. and Wang, Z. (2017). Copper-catalyzed S-methylation of sulfonyl hydrazides with TBHP for the synthesis of methyl sulfones in water. Green Chemistry, 19(1): 112-116.

10.        Sarmah, M., Mondal, M. and Bora, U. (2017). Agrowaste extract based solvents: emergence of novel green solvent for the design of sustainable processes in catalysis and organic chemistry. ChemistrySelect,  2(18): 5180-5188.

11.        RekhaáBoruah, P. and AzizáAli, A. (2015). Pd (OAc) 2 in WERSA: a novel green catalytic system for Suzuki–Miyaura cross-coupling reactions at room temperature. Chemical Communications, 51(57): 11489-11492.

12.        Dewan, A., Sarmah, M., Bora, U. and Thakur, A. J. (2016). A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Letters, 57(33): 3760-3763.

13.        Bagul, S. D., Rajput, J. D. and Bendre, R. S. (2017). Synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels. Environmental Chemistry Letters, 15(4): 725-731.

14.        Surneni, N., Barua, N. C. and Saikia, B. (2016). Application of natural feedstock extract: The Henry reaction. Tetrahedron Letters, 57(25): 2814-2817.

15.        Saikia, B. and Borah, P. (2015). A new avenue to the Dakin reaction in H2O2–WERSA. RSC Advances,  5(128): 105583-105586.

16.        Choi, I. S., Cho, E. J., Moon, J.-H. and Bae, H.-J. (2015). Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chemistry, 188: 537-542.

17.        Marshall, R. E. and Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Managment, 33(4): 988-1003.

18.        Nile, S. H. and Park, S. W. (2013). Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Frontier in Life Science, 7(3-4): 224-228.

19.        Sharma, K., Mahato, N., Nile, S. H., Lee, E. T. and Lee, Y. R. (2016). Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food & Function, 7(8): 3354-3369.

20.        Gao, S., Li, L., Geng, K., Wei, X. and Zhang, S. (2015). Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy, 16: 408-418.

21.        Costantino, L. and Barlocco, D. (2006). Privileged structures as leads in medicinal chemistry. Current Medicinal Chemistry, 13(1): 65-85.

22.        Jiang, H., Sun, J. and Zhang, J. (2012). A review on synthesis of carbazole-based chromophores as organic light-emitting materials. Current Organic Chemistry, 16(17): 2014-2025.

23.        McGlacken, G. P. and Bateman, L. M. (2009). Recent advances in aryl–aryl bond formation by direct arylation. Chemical Society Review, 38(8): 2447-2464.

24.        Jiang, T., Chen, S.-Y., Zhang, G.-Y., Zeng, R.-S. and Zou, J.-P. (2014). CoPc-catalyzed selective radical arylation of anilines with arylhydrazines for synthesis of 2-aminobiaryls. Organic & Biomolecular Chemistry, 12(35): 6922-6926.

25.        Jiang, T., Chen, S.-Y., Zhuang, H., Zeng, R.-S. and Zou, J.-P. (2014). Air-promoted direct radical arylation of anilines with arylhydrazines. Tetrahedron Letters, 55(33): 4549-4552.

26.        Chen, Z.-X. and Wang, G.-W. (2005). One-pot sequential synthesis of acetoxylated [60] fullerene derivatives. Journal of Organic Chemistry, 70(6): 2380-2383.

 

 




Previous                    Content                    Next