Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 750 - 757
DOI:
10.17576/mjas-2018-2205-02
EFFECT OF GOLD SOLUTION CONCENTRATION ON THE FORMATION AND
PHOTOELECTROCHEMICAL PROPERTIES OF GOLD DEPOSITED TITANIUM DIOXIDE NANOTUBES
(Kesan Kepekatan Larutan Emas Terhadap Pembentukan dan
Sifat-Sifat Fotoelektrokimia Nanotiub Titanium Dioksida Terendap Emas)
Siti Sarah Binti Ismail1, Zainiharyati Mohd Zain1, Asmaa Kadim Ayal2, Lim
Ying Chin1*
1School of Chemistry and
Environment, Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
2Department of Chemistry, College of Science for
Women,
University of
Baghdad, Al-Jadriya Campus, Baghdad, Iraq
*Corresponding
author: limyi613@salam.uitm.edu.my
Received: 29
August 2017; Accepted: 20 June 2018
Abstract
Solar photoelectrochemical (PEC) water splitting for hydrogen production
is a clean, eco-friendly, and cost-effective technology that uses solar light
as the energy source. Metal oxides, such as TiO2, are
preferable as a photoanode in PEC water splitting as they have relatively high
reactivity, stable in aqueous solution, and cheaper than non-oxide semiconductors.
However, TiO2 has a large band gap (3.2 eV) that only allows it to be active upon irradiation with UV light. Thus,
gold nanoparticles were deposited onto TiO2 nanotubes (TNT) in this
study to extend their spectral response to the visible
region. Gold deposited titanium dioxide nanotubes (AuTNT) were synthesized by using
pulse electrodeposition. Electrodeposition was carried out in 0.5 M H2SO4
that contained different concentrations (50,
100, 500, and 1,000 µM) of gold solution, with 75% duty cycle and an applied
potential of -0.4 V for 20 minutes in a three-electrode electrochemical cell.
The TNTs were annealed at 500 °C for 2 hours to induce crystallinity prior to gold
deposition. The physicochemical properties of the AuTNT were characterised using
a Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive
X-ray (EDX), and an X-ray Diffractometer
(XRD). Photoelectrochemical properties of AuTNT electrode was evaluated in 0.5 M
Na2SO4 and 2 M C2H5OH under the illumination
of a halogen lamp. The AuTNT electrode prepared with 500 µM gold solution demonstrated
the highest photocurrent compared to other concentrations of gold.
Keywords: gold
nanoparticles, titanium dioxide nanotube, pulse electrodeposition, photoelectrochemical
properties
Abstrak
Pembelahan
air secara fotoelektrokimia suria (PEC) untuk menghasilkan hidrogen merupakan
teknologi yang bersih, mesra alam, dan kos efektif dengan memanfaatkan cahaya
matahari sebagai sumber tenaga. Logam oksida, contohnya TiO2, lebih
digemari sebagai fotoanod dalam pembelahan air PEC kerana logam-logam ini
mempunyai kereaktifan yang agak tinggi, stabil dalam larutan akueus, dan lebih murah
berbanding semikonduktor bukan oksida. Walau bagaimanapun, TiO2 mempunyai
jurang jalur yang besar (3.2 eV) yang hanya membolehkan ia berfungsi di bawah
sinaran cahaya ultralembayung. Oleh itu, nanopartikel emas diendap ke atas
nanotiub TiO2 (TNT) dalam kajian ini untuk mengembangkan tindak
balas spektrum TNT ke kawasan cahaya nampak. Nanotiub titanium dioksida yang diendap
emas (AuTNT) disintesis menggunakan kaedah nadi elektroendapan. Elektroendapan dilakukan
dalam 0.5 M H2SO4 yang mengandungi kepekatan (50, 100,
500, dan 1,000 μM) larutan Au yang berbeza dengan 75% kitar tugas dan keupayaan
dikenakan pada -0.4 V selama 20 minit menggunakan sel elektrokimia tiga
elektrod. Pemanasan nanotiub titanium dioksida telah dilakukan pada suhu 500 °C
selama 2 jam untuk meningkatkan struktur kristal TNT sebelum pengendapan emas. Sifat-sifat fizikokimia AuTNT dikaji
menggunakan mikroskopi pengimbasan elektron pancaran medan (FESEM),
analisis penyerakan tanaga sinar-X (EDX), dan pembelauan sinar-X (XRD). Sifat-sifat
fotoelektrokimia AuTNT telah dinilai dalam 0.5 M Na2SO4
dan 2 M C2H5OH di bawah pencahayaan lampu halogen.
Elektrod AuTNT yang disediakan dengan kepekatan larutan Au pada 500 μM memberikan
fotoarus yang tertinggi berbanding dengan kepekatan emas yang lain.
Kata kunci: nanopartikel emas,
nanotiub titanium dioksida , nadi elektroendapan, sifat fotoelektrokimia
References
1. Chen, Z., Dinh, H. N. and Miller, E. (2013).
Photoelectrochemical water splitting. SpringerBriefs
in Energy, New York: pp. 49-61.
2. Ampelli, C., Centi, G., Passalacqua, R. and Perathoner,
S. (2016). Electrolyte-less design of PEC cells for solar fuels: prospects and
open issues in the development of cells and related catalytic electrodes. Catalysis Today, 259: 246-258.
3. Xu, F., Bai, D., Mei, J., Wu, D., Gao, Z.,
Jiang, K. and Liu, B. (2016). Enhanced
photoelectrochemical performance with in-situ Au modified TiO2
nanorod arrays as photoanode. Journal
of Alloys and Compounds, 688: 914-920.
4. Xu, F., Mei, J., Zheng, M., Bai, D., Wu, D.,
Gao, Z. and Jiang, K. (2017). Au nanoparticles modified branched TiO2
nanorod array arranged with ultrathin nanorods for enhanced
photoelectrochemical water splitting. Journal
of Alloys and Compounds, 693: 1124-1132.
5. Luo, J., Li, D., Yang, Y., Liu, H., Chen, J.
and Wang, H. (2016). Preparation of Au/reduced graphene oxide/hydrogenated TiO2
nanotube arrays ternary composites for visible-light-driven
photoelectrochemical water splitting. Journal
of Alloys and Compounds, 661: 380-388.
6. Mohite, V. S., Mahadik, M. A., Kumbhar, S. S.,
Hunge, Y. M., Kim, J. H., Moholkar, A. V. and Bhosale, C. H. (2015).
Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2
thin films. Journal of
Photochemistry and Photobiology B: Biology, 142: 204-211.
7. Yin, Y., Liu, E., Li, H., Wan, J., Fan, J., Hu,
X. and Pu, C. (2016). Fabrication of plasmonic Au/TiO2 nanotube
arrays with enhanced photoelectrocatalytic
activities. Ceramics International, 42(8):
9387-9395.
8. Notarianni, M., Vernon, K., Chou, A., Aljada,
M., Liu, J. and Motta, N. (2014). Plasmonic effect of gold nanoparticles in
organic solar cells. Solar Energy, 106:
23-37.
9. Chin, L. Y., Zainal, Z., Khusaimi, Z. and Ismail,
S. S. (2016). Electrochemical synthesis of ordered titania nanotubes in mixture of ethylene glycol and glycerol
electrolyte. Malaysian Journal of
Analytical Sciences, 20(2): 373-381.
10. Nyein, N., Tan, W. K., Kawamura, G., Matsuda,
A. and Lockman, Z. (2017). TiO2 nanotube arrays formation in
fluoride/ethylene glycol electrolyte containing LiOH or KOH as photoanode for dye-sensitized solar cell. Journal of Photochemistry and Photobiology
A: Chemistry, 343: 33-39.
11. Pandikumar, A., Lim, S. P., Jayabal, S., Huang,
N. M., Lim, H. N. and Ramaraj, R. (2016). Titania@ gold plasmonic nanoarchitectures: An ideal photoanode for
dye-sensitized solar cells. Renewable
and Sustainable Energy Reviews, 60: 408-420.
12. Moakhar, R. S., Masudy-Panah, S., Jalali, M.,
Goh, G. K. L., Dolati, A., Ghorbani, M. and Riahi-Noori, N. (2016). Sunlight
driven photoelectrochemical light-to-electricity conversion of screen-printed
surface nanostructured TiO2 decorated with plasmonic Au
nanoparticles. Electrochimica Acta, 219:
386-393.