Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 839 - 850
DOI:
10.17576/mjas-2018-2205-11
CHITOSAN-BASED ADSORBENTS FOR THE REMOVAL OF METAL
IONS FROM AQUEOUS SOLUTIONS
(Bahan Penjerap Berasaskan Kitosan untuk
Penyingkiran Ion Logam dari Larutan Akueus)
Zetty Azalea Sutirman1, Mohd Marsin Sanagi1,2*, Khairil Juhanni Abd Karim1, Ahmedy Abu Naim1, Wan Aini Wan Ibrahim1,2
1Department of Chemistry, Faculty of Science
2Centre for Sustainable Nanomaterials, Ibnu Sina
Institute for Scientific and Industrial Research
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru,
Johor, Malaysia
*Corresponding author: marsin@kimia.fs.utm.my
Received: 16
April 2017; Accepted: 7 March 2018
Abstract
Wastewater containing heavy
metal ions is one of the most serious environmental concerns. Exposure to
elevated levels of heavy metals can adversely affect water resources,
endangering the ecosystems and human health. Among the various treatment
technologies, adsorption using biopolymer seems a promising alternative method.
Chitosan is a natural polymer produced from chitin with excellent properties
such as biocompatibility, biodegradability and non-toxicity. Moreover, chitosan
is known as an effective sorbent due to the presence of amino and hydroxyl
groups in its molecules which can serve as attachment sites towards metal ions.
Recently, chitosan derivatives as metal ion sorbents have gained considerable
attention. These derivatives are prepared by either physical or chemical
modifications or both in order to improve chitosan properties in adsorption.
This paper discusses recent developments in the modifications of chitosan and
the application of the derived materials in the removal of metal ions from
aqueous solutions. The mechanisms of adsorption, metal sorption capacities,
effect of pH, isotherm and kinetic models are also described.
Keywords: chitosan, modification, sorption, metal ions
Abstrak
Air sisa
yang mengandungi logam berat merupakan salah satu isu alam sekitar yang serius.
Pendedahan yang tidak terkawal kepada logam berat boleh menyebabkan kesan
negatif terhadap sumber air, membahayakan ekosistem dan kesihatan manusia. Di
antara pelbagai teknologi rawatan, penjerapan menggunakan biopolimer
menunjukkan kaedah alternatif yang menjaminkan. Kitosan ialah polimer semula
jadi yang dihasilkan daripada kitin dengan ciri-ciri seperti biokompatibiliti, biopenguraian dan
bukan toksik. Tambahan pula, kitosan dikenali sebagai penjerap yang efektif
kerana mempunyai kumpulan amina dan hidrosil dalam molekulnya yang bertindak
sebagai tapak penghubung terhadap ion logam. Baru-baru ini, derivatif kitosan
sebagai penjerap ion logam telah menerima perhatian yang luas.
Derivatif-derivatif ini dihasilkan sama ada melalui pengubahsuaian fizikal atau
kimia atau kedua-duanya untuk menambah baik ciri-ciri kitosan dalam penjerapan.
Kertas ini membincangkan pengembangan yang terbaru dalam pengubahsuaian kitosan
serta aplikasi daripada bahan derivatif dalam penyingkiran ion logam dari
larutan akues. Mekanisma penjerapan, kapasiti penjerapan logam, kesan pH, model
dan kinetik juga diterangkan.
Kata
kunci: kitosan, pengubahsuaian,
penjerapan, ion logam
References
1.
Duruibe,
J. O., Ogwuegbu, M. O. C. and Egwurugwu, J. N. (2007). Heavy metal pollution
and human biotoxic effects. International
Journal of Physical Sciences, 2(5): 112-118.
2.
Wang,
X., Guo, Y., Yang, L., Han, M., Zhao, J. and Cheng, X. (2012). Nanomaterials as
sorbents to remove heavy metal ions in wastewater treatment. Environmental and Analytical Toxicology,
2(7): 1-7.
3.
Okoya,
A., Akinyele, A., Amuda, O. and Ofoezie, I. (2016). Chitosan-grafted carbon for
the sequestration of heavy metals in aqueous solution. American Chemical
Science Journal, 11 (3): 1 – 14.
4.
Fu,
F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review.
Journal of Environmental Management,
92(3): 407-418.
5.
Mehdinia,
A., Shegefti, S. and Shemirani, F. (2015). Removal of lead(II), copper(II) and
zinc(II) ions from aqueous solutions using magnetic amine-functionalized
mesoporous silica nanocomposites. Journal
of the Brazilian Chemical Society, 26(11): 2249-2257.
6.
O’Connell,
D. W., Birkinshaw, C. and O’Dwyer, T. F. (2008) Heavy metal adsorbents prepared
from the modification of cellulose: A review. Bioresource Technology, 99(15): 6709-6724.
7.
Abas,
S. A., Ismail, M. H. S., Lias, K. and Izhar, S. (2013). Adsorption process of
heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28(11): 1518-1530.
8.
Bhatnagar,
A. and Minocha, A. K. (2006). Conventional and non-conventional adsorbents for
removal of pollutants from water-a review. Indian
Journal of Chemical Technology, 13(3): 203-217.
9.
Wan
Ngah, W. S. and Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous
solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143 (1-3):
62-72.
10.
Miretzky,
P. and Cirelli, A. F. (2009). Hg(II) removal from water by chitosan and
chitosan derivatives: A review. Journal
of Hazardous Materials, 167(1-3): 10-23.
11.
Vakili,
M., Rafatullah, M., Salamatinia, B., Ibrahim, M. H., and Abdullah, A. Z. (2015).
Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl
triethoxysilane modified chitosan beads. Carbohydrate
Polymers, 132: 89-96.
12.
Zohuriaan-mehr,
M. J. (2005). Advances in chitin and chitosan modification through graft copolymerization:
A comprehensive review. Iranian Polymer
Journal, 14 (3): 235-265.
13.
Wang,
J. and Chen, C. (2014). Chitosan-based biosorbents: Modification and
application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160: 129-141.
14.
Wan
Ngah, W. S., Teong, L. C. and Hanafiah, M. A. K. M. (2011). Adsorption of dyes
and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4): 1446-1456.
15.
Muzzarelli,
R. A. A. (2011). Potential of chitin/chitosan-bearing materials for uranium
recovery: An Interdisciplinary Review.
Carbohydrate Polymers, 84(1): 54-63.
16.
Zhang,
L., Zeng, Y. and Cheng, Z. (2016). Removal of heavy metal ions using chitosan
and modified chitosan: A review. Journal
of Molecular Liquids, 214: 175-191.
17.
Crini,
G. and Badot, P. M. (2008). Application of chitosan, a natural amino polysaccharide,
for dye removal from aqueous solutions by adsorption processes using batch
studies: a review of recent literature. Progress
in Polymer Science, 33: 399-447.
18.
Vakili,
M., Rafatullah, M., Salamatinia, B., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B.,
Gholami, Z. and Amouzgar, P. (2014). Application of chitosan and its derivatives
as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113: 115-130.
19.
Kumirska,
J., Czerwicka, M., Kaczynski, Z., Bychowska, A., Brzozowski, K., Thoming, J.
and Stepnowski, P. (2010) Application of spectroscopic methods for structural
analysis of chitin and chitosan. Marine
Drugs, 8(5): 1567-1636.
20.
Bhatnagar,
A. and Sillanpaa, M. (2009). Applications of chitin- and chitosan-derivatives
for the detoxification of water and wastewater - a short review. Advances in Colloid and Interface Science,
152 (1-2): 26-38.
21.
Azlan,
K., Wan Ngah, W. S. and Lai Ken, L. (2009) Chitosan and chemically modified
chitosan beads for acid dyes sorption. Journal
of Environmental Sciences, 21(3): 296-302.
22.
Kumirska,
J., Weinhold, M. X., Thoming, J. and Stepnowski, P. (2011). Biomedical activity
of chitin/chitosan based materials- influence of physicochemical properties
apart from molecular weight and degree of n-acetylation. Polymers, 3(4): 1875-1901.
23.
Pillai,
C. K. S., Paul, W. and Sharma, C.P. (2009). Chitin and chitosan polymers: Chemistry,
solubility and fiber formation. Progress
in Polymer Science, 34(7): 641-678.
24.
Yuan,
Y., Chesnutt, B. M., Haggard, W. O. and Bumgardner, J. D. (2011). Deacetylation
of chitosan: Material characterization and in vitro evaluation via albumin
adorption and pre-osteoblastic cell Cultures. Materials, 4(8): 1399-1416.
25.
Poon,
L., Wilson, L. D. and Headley, J. V. (2014). Chitosan-glutaraldehyde copolymers
and their sorption properties. Carbohydrate
Polymers, 109: 92-101.
26.
El-hefian,
E. A., Nasef, M. M. and Yahaya, A. H. (2011). Chitosan physical forms: A short
review. Australian Journal of Basic and
Applied Sciences, 5(5): 670-677.
27.
Adarsh,
K. J. and Madhu, G. (2014). A comparative study on metal adsorption properties
of different forms of chitosan. International
journal of Innovative Research in Science Engineering and Technology, 3(2):
9609-9617.
28.
Vieira,
R. S. and Beppu, M. M. (2005). Mercury ion recovery using natural and
crosslinked chitosan membranes. Adsorption, 11(1): 731-736.
29.
Krajewska,
B. (2005). Membrane-based processes performed with use of chitin/chitosan
materials. Separation and Purification
Technology, 41(3): 305-312.
30.
Rinaudo,
M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31 (7):
603-632.
31.
Mane,
S., Ponrathnam, S. and Chavan, N. (2016). Effect of chemical crosslinking on
properties of polymer microbeads: A review. Canadian
Chemical Transactions, 3 (4): 473-485.
32.
Bhattacharya,
A. and Misra, B. N. (2004). Grafting: A versatile means to modify polymers:
techniques, factors and applications. Progress
in Polymer Science, 29(8): 767-814.
33.
Cahyaningrum,
S. E., Narsito, Santoso, S. J. and Agustini, R. (2010). Adsorption of Mg(II)
ion from aqueous solution on chitosan beads and chitosan powder. Journal of Coastal Development, 13(3):
179-184.
34.
Wan
Ngah, W. S., Ab Ghani and Hoon, L. L. (2002). Comparative adsorption of Lead(ll)
on flake and bead-types of chitosan. Journal
of the Chinese Chemical Society, 49(4): 625-628.
35.
Wu,
F. C., Tseng, R. L. and Juang, R. S. (2000). Comparative adsorption of metal
and dye on flake- and bead-types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73(1):
63-75.
36.
Lee,
S., Mi, F., Shen, Y. and Shyu, S. (2011). Equilibrium and kinetic studies of
copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer, 42(5): 1879-1892.
37.
Manasi,
Rajesh, V. and Rajesh, N. (2015). An indigenous halomonas BVR1 strain
immobilized in crosslinked chitosan for adsorption of lead and cadmium. International Journal of Biological
Macromolecules, 79: 300-308.
38.
Hsien,
T. and Liu, Y. (2012). Desorption of cadmium from porous chitosan beads. Advancing Desalination: pp. 163-180.
39.
Radwan,
A. A., Alanazi, F. K. and Alsarra, I. A. (2010). Microwave irradiation-assisted
synthesis of a novel crown ether crosslinked chitosan as a chelating agent for
heavy metal ions. Molecules, 15(9):
6257-6268.
40.
Nagireddi,
S., Katiyar, V. and Uppaluri, R. (2017). Pd(II) adsorption characteristics of
glutaraldehyde cross-linked chitosan copolymer resin. International Journal of Biological Macromolecules, 94(Part A): 72-84.
41.
Monier,
M., Ayad, D. M. and Abdel-Latif, D. A. (2012). Adsorption of Cu(II), Cd(II) and
Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s
base. Colloids and Surfaces B: Biointerfaces, 94: 250-258.
42.
Zheng,
E., Dang, Q., Liu, C., Fan, B., Yan, J., Yu, Z. and Zhang, H. (2016).
Preparation and evaluation of adipic acid dihydrazide cross-linked
carboxymethyl chitosan microspheres for copper ion adsorption. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 502: 34-43.
43.
Wan
Ngah, W. S., Ab Ghani, S. and Kamari, A. (2005). Adsorption behaviour of Fe(II)
and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan
beads. Bioresource Technology, 96(4):
443-450.
44.
Vieira,
R .S., Oliveira, M. L. M., Guibal, E., Rodriguez-Castellon, E. and Beppu, M. M.
(2011). Copper, mercury and chromium adsorption on natural and crosslinked
chitosan films: an XPS investigation of mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
374(1-3): 108-114.
45.
Laus,
R. and Favere, V. T. (2011). Competitive adsorption of Cu(II) and Cd(II) ions
by chitosan crosslinked with epichlorohydrin–triphosphate. Bioresource Technology, 102(19): 8769-8776.
46.
Karthik,
R. and Meenakshi, S. (2015). Removal of Pb(II) and Cd(II) ions from aqueous
solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263: 168-177.
47.
Lalhmunsiama,
Lalchhingpuii, Nautiyal, B. P., Tiwari, D., Choi, S. I., Kong, S. H. and Lee,
S. M. (2016). Silane grafted chitosan for the efficient remediation of aquatic
environment contaminated with arsenic(V). Journal
of Colloid and Interface Science, 467: 203-212.
48.
Kyzas,
G. Z., Siafaka, P. I., Pavlidou, E. G., Chrissafis, K. J. and Bikiaris, D. N.
(2015). Synthesis and adsorption application of succinyl-grafted chitosan for
the simultaneous removal of zinc and cationic dye from binary hazardous
mixtures. Chemical Engineering Journal,
259: 438-448.
49.
Huang,
L., Yuan, S., Lv, L., Tan, G., Liang, B. and Pehkonen, S. O. (2013).
Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP
for enhanced removal of Cd(II) ions from aqueous solution. Journal of Colloid and Interface Science, 405: 171-182.
50.
Maleki,
A., Pajootan, E. and Hayati, B. (2015). Ethyl acrylate grafted chitosan for
heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic
studies. Journal of the Taiwan Institute
of Chemical Engineers, 51: 127-134.
51.
Santhana
Krishna Kumar, A., Uday Kumar, C., Rajesh, V. and Rajesh, N. (2014). Microwave
assisted preparation of n-butylacrylate grafted chitosan and its application
for Cr(VI) adsorption. International
Journal of Biological Macromolecules, 66: 135-143.
52.
Xu,
C., Wang, J., Yang, T., Chen, X., Liu, X. and Ding, X. (2015). Adsorption of
uranium by amidoximated chitosan-grafted polyacrylonitrile using response
surface methodology. Carbohydrate
Polymers, 121: 79-85.
53.
Saleh,
A. S., Ibrahim, A. G., Abdelhai, F., Elsharma, E. M., Metwally, E. and Siyam,
T. (2017). Preparation of poly(chitosan-acrylamide) flocculant using gamma
radiation for adsorption of Cu(II) and Ni(II) ions. Radiation Physics and Chemistry, 134: 33-39.
54.
Lalita,
Singh, A. P. and Sharma, R. K. (2017). Synthesis and characterization of graft
copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI),
Cu(II) and Fe(II) metal ions from aqueous solutions. International Journal of Biological Macromolecules, 99: 409-426.
55.
Galhoum,
A. A., Hassan, K. M., Desouky, O. A., Masoud, A. M., Akashi, T., Sakai, Y. and
Guibal, E. (2017). Aspartic acid grafting on cellulose and chitosan for
enhanced Nd(III) sorption. Reactive and
Functional Polymers, 113: 13 – 22.
56.
Hong,
T. T., Hai, L., Man, N. T., Tam, T. T., Thi, P. and Ha, L. (2012). Preparation
of poly(acrylic acid)-chitosan hydrogels by gamma irradiation for metal ions
sorption. The Annual Report 2012, VINATOM: pp. 286-294.
57.
Benamer,
S., Mahlous, M., Tahtat, D., Nacer-Khodja, A., Arabi, M., Lounici, H. and
Mameri, N. (2011). Radiation synthesis of chitosan beads grafted with acrylic
acid for metal ions sorption. Radiation
Physics and Chemistry, 80(12): 1391-1397.
58.
Sutirman,
Z. A., Sanagi, M. M., Abd Karim, K. J. and Wan Ibrahim, W. A. (2016).
Preparation of methacrylamide-functionalized crosslinked chitosan by free
radical polymerization for the removal of lead ions. Carbohydrate Polymers, 151: 1091-1099.
59.
Igberase,
E. and Osifo, P. (2015). Equilibrium, kinetic, thermodynamic and desorption
studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads
from aqueous solution. Journal of
Industrial and Engineering Chemistry, 26: 340-347.
60.
Liu,
J., Wu, H. T., Lu, J. Feng, Wen, X. Yuan, Kan, J. and Jin, C. Hai. (2015).
Preparation and characterization of novel phenolic acid (hydroxybenzoic and
hydroxycinnamic acid derivatives) grafted chitosan microspheres with enhanced
adsorption properties for Fe(II). Chemical
Engineering Journal, 262: 803-812.
61.
Ramya,
R., Sankar, P., Anbalagan, S. and Sudha, P.N. (2011). Adsorption of Cu(II) and
Ni(II) ions from metal solution using crosslinked chitosan-gacrylonitrile
copolymer. International Journal of
Environmental Sciences, 1(6): 1323-1338.
62.
Bal,
A., Özkahraman, B., Acar, I., Özyürek, M. and Güçlü, G. (2013). Study on
adsorption, regeneration, and reuse of crosslinked chitosan graft copolymers
for Cu(II) ion removal from aqueous solutions. Desalination and Water Treatment, 52(16-18): 3246-3255.
63.
Benamer,
S., Mahlous, M., Tahtat, D., Nacer-Khodja, A., Arabi, M., Lounici, H. and
Mameri, N. (2011). Radiation synthesis of chitosan beads grafted with acrylic
acid for metal ions sorption. Radiation
Physics and Chemistry, 80(12): 1391-1397.
64.
Ge,
H., Hua, T. and Chen, X. (2016). Selective adsorption of lead on grafted and
crosslinked chitosan nanoparticles prepared by using Pb2+ as template.
Journal of Hazardous Materials, 308:
225-232.
65.
Ge,
H., Hua, T. and Wang, J. (2016). Preparation and characterization of
poly(itaconic acid)-grafted crosslinked chitosan nanoadsorbent for high uptake
of Hg2+ and Pb2+. International
Journal of Biological Macromolecules, 95: 954-961.
66.
Ge,
H. and Hua, T. (2016). Synthesis and characterization of poly(maleic
acid)-grafted crosslinked chitosan nanomaterial with high uptake and
selectivity for Hg(II) sorption. Carbohydrate
Polymers, 154: 446-452.
67.
Kuang,
S. P., Wang, Z. Z., Liu, J. and Wu, Z. C. (2013). Preparation of
triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion
from aqueous solutions. Journal of
Hazardous Materials, 260(1): 210-219.