Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 839 - 850

DOI: 10.17576/mjas-2018-2205-11

 

 

 

CHITOSAN-BASED ADSORBENTS FOR THE REMOVAL OF METAL IONS FROM AQUEOUS SOLUTIONS

 

(Bahan Penjerap Berasaskan Kitosan untuk Penyingkiran Ion Logam dari Larutan Akueus)

 

Zetty Azalea Sutirman1, Mohd Marsin Sanagi1,2*, Khairil Juhanni Abd Karim1, Ahmedy Abu Naim1, Wan Aini Wan Ibrahim1,2

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  marsin@kimia.fs.utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Wastewater containing heavy metal ions is one of the most serious environmental concerns. Exposure to elevated levels of heavy metals can adversely affect water resources, endangering the ecosystems and human health. Among the various treatment technologies, adsorption using biopolymer seems a promising alternative method. Chitosan is a natural polymer produced from chitin with excellent properties such as biocompatibility, biodegradability and non-toxicity. Moreover, chitosan is known as an effective sorbent due to the presence of amino and hydroxyl groups in its molecules which can serve as attachment sites towards metal ions. Recently, chitosan derivatives as metal ion sorbents have gained considerable attention. These derivatives are prepared by either physical or chemical modifications or both in order to improve chitosan properties in adsorption. This paper discusses recent developments in the modifications of chitosan and the application of the derived materials in the removal of metal ions from aqueous solutions. The mechanisms of adsorption, metal sorption capacities, effect of pH, isotherm and kinetic models are also described.

 

Keywords:  chitosan, modification, sorption, metal ions

 

Abstrak

Air sisa yang mengandungi logam berat merupakan salah satu isu alam sekitar yang serius. Pendedahan yang tidak terkawal kepada logam berat boleh menyebabkan kesan negatif terhadap sumber air, membahayakan ekosistem dan kesihatan manusia. Di antara pelbagai teknologi rawatan, penjerapan menggunakan biopolimer menunjukkan kaedah alternatif yang menjaminkan. Kitosan ialah polimer semula jadi yang dihasilkan daripada kitin dengan ciri-ciri seperti biokompatibiliti, biopenguraian dan bukan toksik. Tambahan pula, kitosan dikenali sebagai penjerap yang efektif kerana mempunyai kumpulan amina dan hidrosil dalam molekulnya yang bertindak sebagai tapak penghubung terhadap ion logam. Baru-baru ini, derivatif kitosan sebagai penjerap ion logam telah menerima perhatian yang luas. Derivatif-derivatif ini dihasilkan sama ada melalui pengubahsuaian fizikal atau kimia atau kedua-duanya untuk menambah baik ciri-ciri kitosan dalam penjerapan. Kertas ini membincangkan pengembangan yang terbaru dalam pengubahsuaian kitosan serta aplikasi daripada bahan derivatif dalam penyingkiran ion logam dari larutan akues. Mekanisma penjerapan, kapasiti penjerapan logam, kesan pH, model dan kinetik juga diterangkan.

 

Kata kunci:  kitosan, pengubahsuaian, penjerapan, ion logam

 

References

1.       Duruibe, J. O., Ogwuegbu, M. O. C. and Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5): 112-118.

2.       Wang, X., Guo, Y., Yang, L., Han, M., Zhao, J. and Cheng, X. (2012). Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Environmental and Analytical Toxicology, 2(7): 1-7.

3.       Okoya, A., Akinyele, A., Amuda, O. and Ofoezie, I. (2016). Chitosan-grafted carbon for the sequestration of heavy metals in aqueous solution. American Chemical Science Journal, 11 (3): 1 – 14.

4.       Fu, F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3): 407-418.

5.       Mehdinia, A., Shegefti, S. and Shemirani, F. (2015). Removal of lead(II), copper(II) and zinc(II) ions from aqueous solutions using magnetic amine-functionalized mesoporous silica nanocomposites. Journal of the Brazilian Chemical Society, 26(11): 2249-2257.

6.       O’Connell, D. W., Birkinshaw, C. and O’Dwyer, T. F. (2008) Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99(15): 6709-6724.

7.       Abas, S. A., Ismail, M. H. S., Lias, K. and Izhar, S. (2013). Adsorption process of heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28(11): 1518-1530.

8.       Bhatnagar, A. and Minocha, A. K. (2006). Conventional and non-conventional adsorbents for removal of pollutants from water-a review. Indian Journal of Chemical Technology, 13(3): 203-217.

9.       Wan Ngah, W. S. and Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143 (1-3): 62-72.

10.    Miretzky, P. and Cirelli, A. F. (2009). Hg(II) removal from water by chitosan and chitosan derivatives: A review. Journal of Hazardous Materials, 167(1-3): 10-23.

11.    Vakili, M., Rafatullah, M., Salamatinia, B., Ibrahim, M. H., and Abdullah, A. Z. (2015). Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads. Carbohydrate Polymers, 132: 89-96.

12.    Zohuriaan-mehr, M. J. (2005). Advances in chitin and chitosan modification through graft copolymerization: A comprehensive review. Iranian Polymer Journal, 14 (3): 235-265.

13.    Wang, J. and Chen, C. (2014). Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160: 129-141.

14.    Wan Ngah, W. S., Teong, L. C. and Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4): 1446-1456.

15.    Muzzarelli, R. A. A. (2011). Potential of chitin/chitosan-bearing materials for uranium recovery: An Interdisciplinary Review. Carbohydrate Polymers, 84(1): 54-63.

16.    Zhang, L., Zeng, Y. and Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214: 175-191.

17.    Crini, G. and Badot, P. M. (2008). Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 33: 399-447.

18.    Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B., Gholami, Z. and Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113: 115-130.

19.    Kumirska, J., Czerwicka, M., Kaczynski, Z., Bychowska, A., Brzozowski, K., Thoming, J. and Stepnowski, P. (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs, 8(5): 1567-1636.

20.    Bhatnagar, A. and Sillanpaa, M. (2009). Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater - a short review. Advances in Colloid and Interface Science, 152 (1-2): 26-38.

21.    Azlan, K., Wan Ngah, W. S. and Lai Ken, L. (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences, 21(3): 296-302.

22.    Kumirska, J., Weinhold, M. X., Thoming, J. and Stepnowski, P. (2011). Biomedical activity of chitin/chitosan based materials- influence of physicochemical properties apart from molecular weight and degree of n-acetylation. Polymers, 3(4): 1875-1901.

23.    Pillai, C. K. S., Paul, W. and Sharma, C.P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7): 641-678.

24.    Yuan, Y., Chesnutt, B. M., Haggard, W. O. and Bumgardner, J. D. (2011). Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adorption and pre-osteoblastic cell Cultures. Materials, 4(8): 1399-1416.

25.    Poon, L., Wilson, L. D. and Headley, J. V. (2014). Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydrate Polymers, 109: 92-101.

26.    El-hefian, E. A., Nasef, M. M. and Yahaya, A. H. (2011). Chitosan physical forms: A short review. Australian Journal of Basic and Applied Sciences, 5(5): 670-677.

27.    Adarsh, K. J. and Madhu, G. (2014). A comparative study on metal adsorption properties of different forms of chitosan. International journal of Innovative Research in Science Engineering and Technology, 3(2): 9609-9617.

28.    Vieira, R. S. and Beppu, M. M. (2005). Mercury ion recovery using natural and crosslinked chitosan membranes. Adsorption, 11(1): 731-736.

29.    Krajewska, B. (2005). Membrane-based processes performed with use of chitin/chitosan materials. Separation and Purification Technology, 41(3): 305-312.

30.    Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31 (7): 603-632.

31.    Mane, S., Ponrathnam, S. and Chavan, N. (2016). Effect of chemical crosslinking on properties of polymer microbeads: A review. Canadian Chemical Transactions, 3 (4): 473-485.

32.    Bhattacharya, A. and Misra, B. N. (2004). Grafting: A versatile means to modify polymers: techniques, factors and applications. Progress in Polymer Science, 29(8): 767-814.

33.    Cahyaningrum, S. E., Narsito, Santoso, S. J. and Agustini, R. (2010). Adsorption of Mg(II) ion from aqueous solution on chitosan beads and chitosan powder. Journal of Coastal Development, 13(3): 179-184.

34.    Wan Ngah, W. S., Ab Ghani and Hoon, L. L. (2002). Comparative adsorption of Lead(ll) on flake and bead-types of chitosan. Journal of the Chinese Chemical Society, 49(4): 625-628.

35.    Wu, F. C., Tseng, R. L. and Juang, R. S. (2000). Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73(1): 63-75.

36.    Lee, S., Mi, F., Shen, Y. and Shyu, S. (2011). Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer, 42(5): 1879-1892.

37.    Manasi, Rajesh, V. and Rajesh, N. (2015). An indigenous halomonas BVR1 strain immobilized in crosslinked chitosan for adsorption of lead and cadmium. International Journal of Biological Macromolecules, 79: 300-308.

38.    Hsien, T. and Liu, Y. (2012). Desorption of cadmium from porous chitosan beads. Advancing Desalination: pp. 163-180.

39.    Radwan, A. A., Alanazi, F. K. and Alsarra, I. A. (2010). Microwave irradiation-assisted synthesis of a novel crown ether crosslinked chitosan as a chelating agent for heavy metal ions. Molecules, 15(9): 6257-6268.

40.    Nagireddi, S., Katiyar, V. and Uppaluri, R. (2017). Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. International Journal of Biological Macromolecules, 94(Part A): 72-84.

41.    Monier, M., Ayad, D. M. and Abdel-Latif, D. A. (2012). Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloids and Surfaces B: Biointerfaces, 94: 250-258.

42.    Zheng, E., Dang, Q., Liu, C., Fan, B., Yan, J., Yu, Z. and Zhang, H. (2016). Preparation and evaluation of adipic acid dihydrazide cross-linked carboxymethyl chitosan microspheres for copper ion adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 502: 34-43.

43.    Wan Ngah, W. S., Ab Ghani, S. and Kamari, A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4): 443-450.

44.    Vieira, R .S., Oliveira, M. L. M., Guibal, E., Rodriguez-Castellon, E. and Beppu, M. M. (2011). Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374(1-3): 108-114.

45.    Laus, R. and Favere, V. T. (2011). Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin–triphosphate. Bioresource Technology, 102(19): 8769-8776.

46.    Karthik, R. and Meenakshi, S. (2015). Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263: 168-177.

47.    Lalhmunsiama, Lalchhingpuii, Nautiyal, B. P., Tiwari, D., Choi, S. I., Kong, S. H. and Lee, S. M. (2016). Silane grafted chitosan for the efficient remediation of aquatic environment contaminated with arsenic(V). Journal of Colloid and Interface Science, 467: 203-212.

48.    Kyzas, G. Z., Siafaka, P. I., Pavlidou, E. G., Chrissafis, K. J. and Bikiaris, D. N. (2015). Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chemical Engineering Journal, 259: 438-448.

49.    Huang, L., Yuan, S., Lv, L., Tan, G., Liang, B. and Pehkonen, S. O. (2013). Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution. Journal of Colloid and Interface Science, 405: 171-182.

50.    Maleki, A., Pajootan, E. and Hayati, B. (2015). Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 51: 127-134.

51.    Santhana Krishna Kumar, A., Uday Kumar, C., Rajesh, V. and Rajesh, N. (2014). Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption. International Journal of Biological Macromolecules, 66: 135-143.

52.    Xu, C., Wang, J., Yang, T., Chen, X., Liu, X. and Ding, X. (2015). Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile using response surface methodology. Carbohydrate Polymers, 121: 79-85.

53.    Saleh, A. S., Ibrahim, A. G., Abdelhai, F., Elsharma, E. M., Metwally, E. and Siyam, T. (2017). Preparation of poly(chitosan-acrylamide) flocculant using gamma radiation for adsorption of Cu(II) and Ni(II) ions. Radiation Physics and Chemistry, 134: 33-39.

54.    Lalita, Singh, A. P. and Sharma, R. K. (2017). Synthesis and characterization of graft copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions. International Journal of Biological Macromolecules, 99: 409-426.

55.    Galhoum, A. A., Hassan, K. M., Desouky, O. A., Masoud, A. M., Akashi, T., Sakai, Y. and Guibal, E. (2017). Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption. Reactive and Functional Polymers, 113: 13 – 22.

56.    Hong, T. T., Hai, L., Man, N. T., Tam, T. T., Thi, P. and Ha, L. (2012). Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation for metal ions sorption. The Annual Report 2012, VINATOM: pp. 286-294.

57.    Benamer, S., Mahlous, M., Tahtat, D., Nacer-Khodja, A., Arabi, M., Lounici, H. and Mameri, N. (2011). Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption. Radiation Physics and Chemistry, 80(12): 1391-1397.

58.    Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J. and Wan Ibrahim, W. A. (2016). Preparation of methacrylamide-functionalized crosslinked chitosan by free radical polymerization for the removal of lead ions. Carbohydrate Polymers, 151: 1091-1099.

59.    Igberase, E. and Osifo, P. (2015). Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. Journal of Industrial and Engineering Chemistry, 26: 340-347.

60.    Liu, J., Wu, H. T., Lu, J. Feng, Wen, X. Yuan, Kan, J. and Jin, C. Hai. (2015). Preparation and characterization of novel phenolic acid (hydroxybenzoic and hydroxycinnamic acid derivatives) grafted chitosan microspheres with enhanced adsorption properties for Fe(II). Chemical Engineering Journal, 262: 803-812.

61.    Ramya, R., Sankar, P., Anbalagan, S. and Sudha, P.N. (2011). Adsorption of Cu(II) and Ni(II) ions from metal solution using crosslinked chitosan-g­acrylonitrile copolymer. International Journal of Environmental Sciences, 1(6): 1323-1338.

62.    Bal, A., Özkahraman, B., Acar, I., Özyürek, M. and Güçlü, G. (2013). Study on adsorption, regeneration, and reuse of crosslinked chitosan graft copolymers for Cu(II) ion removal from aqueous solutions. Desalination and Water Treatment, 52(16-18): 3246-3255.

63.    Benamer, S., Mahlous, M., Tahtat, D., Nacer-Khodja, A., Arabi, M., Lounici, H. and Mameri, N. (2011). Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption. Radiation Physics and Chemistry, 80(12): 1391-1397.

64.    Ge, H., Hua, T. and Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308: 225-232.

65.    Ge, H., Hua, T. and Wang, J. (2016). Preparation and characterization of poly(itaconic acid)-grafted crosslinked chitosan nanoadsorbent for high uptake of Hg2+ and Pb2+. International Journal of Biological Macromolecules, 95: 954-961.

66.    Ge, H. and Hua, T. (2016). Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydrate Polymers, 154: 446-452.

67.    Kuang, S. P., Wang, Z. Z., Liu, J. and Wu, Z. C. (2013). Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. Journal of Hazardous Materials, 260(1): 210-219.

 




Previous                    Content                    Next