Malaysian Journal
of Analytical Sciences Vol 22 No 5 (2018): 828 - 838
DOI:
10.17576/mjas-2018-2205-10
DETERMINATION OF NATURAL RADIOACTIVITY AND HEAVY METALS
AT THE FORMER MINING SITE OF KOLEJ UNIVERSITI ISLAM ANTARABANGSA SELANGOR
(KUIS) LAKE
(Penentuan Keradioaktifan Tabii dan Logam Berat di
Kawasan Bekas Lombong Tasik Kolej Universiti Islam Antarabangsa Selangor
(KUIS))
Nur Ain Mohd Radzali, Norsyahidah Mohd Hidzir*, Irman
Abdul Rahman
Nuclear Technology
Research Centre, School of Applied Physics,
Faculty of Science and
Technology,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: syahidah@ukm.edu.my
Received: 29
August 2017; Accepted: 15 August 2018
Abstract
An ex-mining site has created an
undesirable effect on the environment, such as the destruction of plants and
contamination. Thus, this study was conducted to determine the natural
radioactivity and heavy metal presence in the ex-mining site at Kolej
University Islam Antarabangsa Selangor (KUIS) lake. Both parameters were
measured using gamma spectrometry and inductively coupled plasma-mass
spectrometry (ICP-MS). The results showed that the concentrations of 238U
(0.44 ± 0.31 Bq/L), 232Th
(0.04 ± 0.02 Bq/L), 226 Ra (0.19 ± 0.11 Bq/L), and 40K
(0.62 ± 0.37 Bq/L) in water samples were below the recommended values by the
World Health Organization (WHO) for drinking water source, which implied the
safe consumption of the water. However, the presence of 238U, 232Th,
226 Ra, and 40K in
sediment samples exceeded the limit proposed by UNSCEAR, with the radioactivity
of 49.1 ± 18.8 Bq/kg, 102.3 ± 3.3 Bq/kg, 133.2 ± 18.8 Bq/kg, and 297.1 ± 25.7 Bq/kg, respectively. For heavy
metal determination, zinc was found in the sediment with the highest
concentration (17.34 ± 15.79 mg/kg) compared to other heavy metals, while the
concentration of arsenic was highest in water with 0.58 ± 0.26 µg/L. All hazard indices were found to be below the safety
limit except for the gamma index of 1.6 ± 0.7 Bq/kg and 104.1 ± 48.4 nGy/h for
the gamma dose rate.
Keywords: radioactivity, heavy metals, water, sediment,
gamma spectrometry
Abstrak
Tapak bekas lombong telah meninggalkan impak yang tidak
diingini kepada alam sekitar seperti pemusnahan tanaman dan pencemaran. Oleh
itu, kajian ini dijalankan untuk menentukan kehadiran radionuklid tabii dan
logam berat di tapak bekas perlombongan di tasik Kolej Universiti Islam
Antarabangsa Selangor (KUIS). Kedua-dua parameter ini diukur menggunakan
spektrometri gama dan spektometer jisim-gandingan plasma teraruh (ICP-MS).
Hasil kajian menunjukkan kepekatan 238U (0.44 ± 0.31
Bq/L), 232Th (0.04 ± 0.02 Bq/L), 226Ra (0.19 ± 0.11 Bq/L) dan 40K (0.62 ± 0.37 Bq/L)
berada di bawah nilai yang disyorkan oleh WHO untuk sumber air minuman,
menunjukkan air berada ditahap selamat untuk diminum. Walau bagaimanapun,
kehadiran 238U, 232Th,
226Ra and 40K dalam sampel sedimen
melebihi had yang dicadangkan oleh UNSCEAR, dengan kepekatan 49.1 ± 18.8 Bq/kg,
102.3 ± 3.3 Bq/kg, 133.2 ± 18.8 Bq/kg dan 297.1 ± 25.7 Bq/kg. Bagi penentuan
logam berat, didapati zink menunjukkan kepekatan tertinggi dalam sedimen (17.34
± 15.79 mg/kg) berbanding dengan logam berat lain, manakala kepekatan arsenik
adalah tertinggi dalam air dengan 0.58 ± 0.26 μg/L. Semua indeks bahaya
didapati berada di bawah had keselamatan kecuali indeks gamma iaitu 1.6 ± 0.7
Bq/kg dan 104.1 ± 48.4 nGy/h untuk kadar dos gama.
Kata kunci: radioaktiviti, logam berat, air, sedimen,
spektrometri gama
References
1.
Saat, A., Isak, N. M., Hamzah, Z. and
Wood, A. K. (2014). Study of radionuclides linkage between fish, water and
sediment in former tin mining lake in Kampung Gajah, Perak. Malaysian Journal of Analytical Sciences, 18(1): 170-177.
2.
Irvin,
T. R. and Cruz-Batres, C. (1996). Naturally occurring radioactive
material:Principles and practices. St.
Lucoe Press, Delray Beach, Florida: pp. 2-3.
3.
Avwiri,
G. O., Ononugbo, C. P. and Nwokeoji, I. E. (2014). Radiation hazard indices and
excess lifetime cancer risk in soil, sediment and water around
Mini-Okoro/Oginigba Creek, Port Harcourt, River State, Nigeria. Journal
of Environment and Earth Sciences, 3(1): 38-50
4.
Al-Hamarneh,
I. F. and Awadallah, M. I. (2009). Soil radioactivity levels and radiation
hazard assessment in the highlands of northern Jordan. Radiation Measurements,
44(1): 102-110.
5.
Alias,
M., Hamzah, Z., Saat, A., Omar, M. and Wood, A.K. (2008). An assessment of
absorbed dose and radiation hazard index from natural radioactivity. Malaysian
Journal of Analytical Sciences, 12(1): 195-204.
6.
Taskin,
H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S. and Karahan, G. (2009).
Radionuclide concentrations in soil and lifetime cancer risk due to gamma
radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity,
100(1): 49-53.
7.
Erickson,
A. J., Weiss, P. T. and Gulliver, J. S. (2013). Water sampling methods: pp. 163-192.
8.
Yasir,
M. S., Kabir, N. A., Yahaya, R. and Majid, A. A. (2008). Kandungan logam berat
dan radionuklid tabii dalam ikan, air, tumbuhan dan sedimen.Malaysian Journal of Analytical Sciences, 12 (1): 172-178.
9.
Nasirian,
M., Bahari, I. and Abdullah, P. (2008). Assessment of natural radioactivity in
water and sediment from amang (tin tailing) processing ponds. Malaysia
Journal of Analytical Sciences, 12(1): 150-159.
10.
Almayahi,
B. A., Tajuddin, A. A. and Jaafar, M. S. (2012). Radiation hazard indices of
soil and water samples in Northern Malaysian Peninsula. Applied Radiation and
Isotopes, 70(11): 2652-2660.
11.
Yasir,
M. S., Ab. Majid, A., Ibrahim, F., Tap, S. Q. M. and Abidin, M. R. Z. (2006).
Analisis 238U, 232Th dan 40K dalam sampel
amang, tanah dan air di Dengkil, Selangor menggunakan spektrometri gama. Malaysian
Journal of Analytical Sciences, 10(1): 35-40.
12.
United
States Environmental Protection Agency (2014). Method 6020B: Inductively
coupled plasma - mass spectrometry, part of test methods for evaluating solid
waste, physical/chemical methods.
Washington DC: pp. 1-33.
13.
Talib,
O. (2015). SPSS: Analissis data kuantitatif untuk penyelidik muda. MPWS Rich Publication Sdn Bhd, Bangi,
Selangor: pp. 4-215.
14.
Harb,
S., El-Kamel, A.H., El-Mageed, A.I.A., Abbady, A. and Rashed, W. (2008).
Concentration of U-238, Ra-226 Th-232 and K-40 for some granite samples in
Eastern Desert of Egypt. Proceedings of the 3rd Environmental Physics
Conference, Aswan, Egypt: 109-117.
15.
Organisation
for Economic Cooperation and Development. (1979). Exposure to radiation from
natural radioactivity in building materials.
France: pp. 1-40.
16.
Guptaa,
M., Chauhana, R. P., Gargb, A., Kumarc, S. and Sonkawaded, R. G. (2010).
Estimation of radioactivity in some sand and soil samples. Indian Journal of Pure
& Applied Physics, 48: 482-485.
17.
Diab,
H. M., Nouh, S. A., Hamdy, A. and El-Fiki, S. A. (2008). Evaluation of natural
radioactivity in a cultivated area around a fertiliser factory. Journal
of Nuclear and Radiation Physics, 3(1): 53-62.
18.
United
Nations Scientific Committee on the Effects of Atomic Radiation (1977). Sources
and effects of ionizing radiation. Annex A:Concepts and quantities in the
assessment of human exposures. New York.
19.
United
Nations Scientific Committee on the Effects of Atomic Radiation (2000). Annex
B-exposures from natural radiation sources.
New York.
20.
Hirner,
A.V. (2016). Environmental impacts of metallic elements: Speciation,
bioavailability and remediation, in Environmental
Earth Sciences, Sarfraz M. Ashraf M. A., Naureen R., Gharibreza M, Editor.
Springer, Berlin: pp. 1183.
21.
Ashraf,
M. A., Maah, M. J. and Yusoff, I. B. (2010). Study of water quality and heavy
metals in soil & water of ex-mining area Bestari Jaya, Peninsular Malaysia. International
Journal of Basic & Applied Sciences, 10(03): 7-23.
22.
Al-Badaii,
F., Shuhaimi-Othman, M. and Gasim, M. B. (2013). Water quality assessment of
the Semenyih River, Selangor, Malaysia.
Journal of Chemistry, 2013: 1-10.
23.
National
Hydraulic Research Institute of Malaysia and Ministry of Natural Resources and
Environment. (2015). National Lake Water Quality Criteria and Standards. Malaysia. Access from
http://www.nahrim.gov.my/en/publications/listofpublications/1195-national-lake-water-quality-criteria-and-standards.html.
24.
Wetzel,
R. G. (2001). Limnology, lake and river ecosystem. Elsvier, United States.
25.
Chapman
D. (1996). Water quality assessments - A guide to use of biota, sediments and
water in environmental monitoring. University
Press, Cambridge. Great Britain: pp. 1-609.
26.
Schmus,
W. R. V. (1995). Global earth geophysics: A handbook of physical constants. American Geophysical Union, USA: pp.
1-376.
27.
Kathren,
R. L. (1998). NORM sources and their origins.
Applied Radiation and Isotopes,
49(3): 149-168.
28.
Boyle,
R.W. (1982). Geochemical prospecting for thorium and uranium - Hydrochemical
Surveys. Elsevier: pp. 277-315.
29.
Yasir,
M. S., Majid, A. A., Yahaya, R., Bahari, I. and Kim, W. S. (2007). Impak
aktiviti pemprosesan amang sistem tertutup ke atas kualiti air dan sedimen
setempat. Malaysian Journal of Analytical Sciences, 11(2): 370 -378.
30.
World
Health Organisation (2011). Guidelines for drinking-water quality. (4th) WHO Press.
Switzerland: pp. 1-564.
31.
Majid,
A., Umar, S. R., Yahaya, R., Yasir, M. S. and Othman, M. S. (2008). Analisis
unsur dan keradioaktifan dalam sampel sedimen Tasik Chini, Pahang Darul Makmur. Malaysian
Journal of Analytical Sciences, 12(1): 167-171.
32.
Sharip,
Z., Zaki, A. T. A., Shapai, M. A. H. M., Suratman, S. and Shaaban, A. J.
(2014). Lakes of Malaysia: Water quality, eutrophication and management. Lakes
and Reservoirs: Research and Management,19(2): 130-141.
33.
Water
Environment Partnership in Asia. (2008). National water quality standards for
Malaysia. Access from http://wepa-db.net/3rd/jp/topic/waterstandard/Malaysia_1_surface.pdf.
34.
Mohamed,
C. A. R., Ahmad, Z. and Mon, G. C. (2006). Aktiviti Ra226 dalam
sistem aliran sungai lembangan Langat, Selangor. Malaysian Journal of Analytical
Sciences, 10(2): 295-302.
35.
United
States Environmental Protection Agency (2009). National Primary Drinking Water
Regulations. Access from https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.
36.
Ministry
of Health Malaysia (2000). National water quality standards for Malaysia.Access from https://environment.com.my/wp-content/uploads/2016/05/Drinking-Water-MOH.pdf.
37.
Moore,
J.W. and Ramamoorthy, S. (1984). Heavy Metals in Natural Waters: Applied Monitoring
and Impact Assessment. Springer-Verlag
New York Inc: 1-269.
38.
Greaney,
K. M. (2005). An assessment of heavy metal contamination in the marine
sediments of Las Perlas Archipelago, Gulf of Panama. Thesis of Master Degree. Heriot-Watt University, Edinburgh, UK.
39.
Hamzah,
Z., Saat, A., Bakar, Z. A. and Wood, A. K. (2011). Anthropogenic heavy metals,
U-238 and Th-232 profiles in sediments from an abandoned tin mining lake in
Malaysia. 3rd International Conference on Chemical, Biological and
Environmental Engineering, 2011:75-79.
40.
Singh,
K. P., Mohan, D., Singh, V. K. and Malik, A. (2005). Studies on distribution
and fractionation of heavy metals in Gomti river sediments—a tributary of the
Ganges, India. Journal of Hydrology, 312 (1-4): 14-27.
41.
Gharibreza,
M., Ashraf, M. A., Yusoff, I. and Raj, J. K. (2013). An evaluation of Bera Lake
(Malaysia) sediment contamination using sediment quality guidelines. Journal
of Chemistry, 2013: 1-13.
42.
Karadede,
H. and Unlu, E. (2000). Concentrations of some heavy metals in water, sediment
and fish species from the Atatürk Dam Lake (Euphrates). Chemosphere, 41:
1371-1376.
43.
United
States Environmental Protection Agency (2006). Freshwater Sediment Screening
Benchmarks. Access from https://www.epa.gov/sites/production/files/2015-09/documents/r3_btag_fw_sediment_
benchmarks_8-06.pdf
44.
Hamzah,
Z., Saat, A., Wood, A. K. and Bakar, Z. A. (2011). Sedimentation, heavy metals
profiles and cluster analysis of a former tin mining lake. International Journal of
Environmental Science and Development, 2(6): 448-453.
45.
Mei-Wo,
Y., Jaffary, N. A. M. and Ahmad, Z. (2011). Radiation hazard from natural
radioactivity in the sediment of the East Coast Peninsular Malaysia Exclusive
Economic Zone (EEZ). Malaysian Journal of
Analytical Sciences, 15(2): 202-121.