Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 828 - 838

DOI: 10.17576/mjas-2018-2205-10

 

 

 

DETERMINATION OF NATURAL RADIOACTIVITY AND HEAVY METALS AT THE FORMER MINING SITE OF KOLEJ UNIVERSITI ISLAM ANTARABANGSA SELANGOR (KUIS) LAKE

 

(Penentuan Keradioaktifan Tabii dan Logam Berat di Kawasan Bekas Lombong Tasik Kolej Universiti Islam Antarabangsa Selangor (KUIS))

 

Nur Ain Mohd Radzali, Norsyahidah Mohd Hidzir*, Irman Abdul Rahman

 

Nuclear Technology Research Centre, School of Applied Physics,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  syahidah@ukm.edu.my

 

 

Received: 29 August 2017; Accepted: 15 August 2018

 

 

Abstract

An ex-mining site has created an undesirable effect on the environment, such as the destruction of plants and contamination. Thus, this study was conducted to determine the natural radioactivity and heavy metal presence in the ex-mining site at Kolej University Islam Antarabangsa Selangor (KUIS) lake. Both parameters were measured using gamma spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the concentrations of 238U (0.44 ± 0.31 Bq/L), 232Th (0.04 ± 0.02 Bq/L), 226 Ra (0.19 ± 0.11 Bq/L), and 40K (0.62 ± 0.37 Bq/L) in water samples were below the recommended values by the World Health Organization (WHO) for drinking water source, which implied the safe consumption of the water. However, the presence of 238U, 232Th, 226 Ra, and 40K in sediment samples exceeded the limit proposed by UNSCEAR, with the radioactivity of 49.1 ± 18.8 Bq/kg, 102.3 ± 3.3 Bq/kg, 133.2 ± 18.8 Bq/kg, and 297.1 ± 25.7 Bq/kg, respectively. For heavy metal determination, zinc was found in the sediment with the highest concentration (17.34 ± 15.79 mg/kg) compared to other heavy metals, while the concentration of arsenic was highest in water with 0.58 ± 0.26 µg/L. All hazard indices were found to be below the safety limit except for the gamma index of 1.6 ± 0.7 Bq/kg and 104.1 ± 48.4 nGy/h for the gamma dose rate.

 

Keywords:  radioactivity, heavy metals, water, sediment, gamma spectrometry

 

Abstrak

Tapak bekas lombong telah meninggalkan impak yang tidak diingini kepada alam sekitar seperti pemusnahan tanaman dan pencemaran. Oleh itu, kajian ini dijalankan untuk menentukan kehadiran radionuklid tabii dan logam berat di tapak bekas perlombongan di tasik Kolej Universiti Islam Antarabangsa Selangor (KUIS). Kedua-dua parameter ini diukur menggunakan spektrometri gama dan spektometer jisim-gandingan plasma teraruh (ICP-MS). Hasil kajian menunjukkan kepekatan 238U  (0.44 ± 0.31 Bq/L), 232Th (0.04 ± 0.02 Bq/L), 226Ra (0.19 ± 0.11 Bq/L) dan 40K (0.62 ± 0.37 Bq/L) berada di bawah nilai yang disyorkan oleh WHO untuk sumber air minuman, menunjukkan air berada ditahap selamat untuk diminum. Walau bagaimanapun, kehadiran 238U, 232Th, 226Ra and 40K dalam sampel sedimen melebihi had yang dicadangkan oleh UNSCEAR, dengan kepekatan 49.1 ± 18.8 Bq/kg, 102.3 ± 3.3 Bq/kg, 133.2 ± 18.8 Bq/kg dan 297.1 ± 25.7 Bq/kg. Bagi penentuan logam berat, didapati zink menunjukkan kepekatan tertinggi dalam sedimen (17.34 ± 15.79 mg/kg) berbanding dengan logam berat lain, manakala kepekatan arsenik adalah tertinggi dalam air dengan 0.58 ± 0.26 μg/L. Semua indeks bahaya didapati berada di bawah had keselamatan kecuali indeks gamma iaitu 1.6 ± 0.7 Bq/kg dan 104.1 ± 48.4 nGy/h untuk kadar dos gama.

 

Kata kunci:  radioaktiviti, logam berat, air, sedimen, spektrometri gama

 

References

1.          Saat, A., Isak, N. M., Hamzah, Z. and Wood, A. K. (2014). Study of radionuclides linkage between fish, water and sediment in former tin mining lake in Kampung Gajah, Perak. Malaysian Journal of Analytical Sciences, 18(1): 170-177.

2.          Irvin, T. R. and Cruz-Batres, C. (1996). Naturally occurring radioactive material:Principles and practices. St. Lucoe Press, Delray Beach, Florida: pp. 2-3.

3.          Avwiri, G. O., Ononugbo, C. P. and Nwokeoji, I. E. (2014). Radiation hazard indices and excess lifetime cancer risk in soil, sediment and water around Mini-Okoro/Oginigba Creek, Port Harcourt, River State, Nigeria. Journal of Environment and Earth Sciences, 3(1): 38-50

4.          Al-Hamarneh, I. F. and Awadallah, M. I. (2009). Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan. Radiation Measurements, 44(1): 102-110.

5.          Alias, M., Hamzah, Z., Saat, A., Omar, M. and Wood, A.K. (2008). An assessment of absorbed dose and radiation hazard index from natural radioactivity. Malaysian Journal of Analytical Sciences, 12(1): 195-204.

6.          Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S. and Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100(1): 49-53.

7.          Erickson, A. J., Weiss, P. T. and Gulliver, J. S. (2013). Water sampling methods: pp. 163-192.

8.          Yasir, M. S., Kabir, N. A., Yahaya, R. and Majid, A. A. (2008). Kandungan logam berat dan radionuklid tabii dalam ikan, air, tumbuhan dan sedimen.Malaysian Journal of Analytical Sciences, 12 (1): 172-178.

9.          Nasirian, M., Bahari, I. and Abdullah, P. (2008). Assessment of natural radioactivity in water and sediment from amang (tin tailing) processing ponds. Malaysia Journal of Analytical Sciences, 12(1): 150-159.

10.        Almayahi, B. A., Tajuddin, A. A. and Jaafar, M. S. (2012). Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula. Applied Radiation and Isotopes, 70(11): 2652-2660.

11.        Yasir, M. S., Ab. Majid, A., Ibrahim, F., Tap, S. Q. M. and Abidin, M. R. Z. (2006). Analisis 238U, 232Th dan 40K dalam sampel amang, tanah dan air di Dengkil, Selangor menggunakan spektrometri gama. Malaysian Journal of Analytical Sciences, 10(1): 35-40.

12.        United States Environmental Protection Agency (2014). Method 6020B: Inductively coupled plasma - mass spectrometry, part of test methods for evaluating solid waste, physical/chemical methods. Washington DC: pp. 1-33.

13.        Talib, O. (2015). SPSS: Analissis data kuantitatif untuk penyelidik muda. MPWS Rich Publication Sdn Bhd, Bangi, Selangor: pp. 4-215.

14.        Harb, S., El-Kamel, A.H., El-Mageed, A.I.A., Abbady, A. and Rashed, W. (2008). Concentration of U-238, Ra-226 Th-232 and K-40 for some granite samples in Eastern Desert of Egypt. Proceedings of the 3rd Environmental Physics Conference, Aswan, Egypt: 109-117.

15.        Organisation for Economic Cooperation and Development. (1979). Exposure to radiation from natural radioactivity in building materials. France: pp. 1-40.

16.        Guptaa, M., Chauhana, R. P., Gargb, A., Kumarc, S. and Sonkawaded, R. G. (2010). Estimation of radioactivity in some sand and soil samples. Indian Journal of Pure & Applied Physics, 48: 482-485.

17.        Diab, H. M., Nouh, S. A., Hamdy, A. and El-Fiki, S. A. (2008). Evaluation of natural radioactivity in a cultivated area around a fertiliser factory. Journal of Nuclear and Radiation Physics, 3(1): 53-62.

18.        United Nations Scientific Committee on the Effects of Atomic Radiation (1977). Sources and effects of ionizing radiation. Annex A:Concepts and quantities in the assessment of human exposures. New York.

19.        United Nations Scientific Committee on the Effects of Atomic Radiation (2000). Annex B-exposures from natural radiation sources. New York.

20.        Hirner, A.V. (2016). Environmental impacts of metallic elements: Speciation, bioavailability and remediation, in Environmental Earth Sciences, Sarfraz M. Ashraf M. A., Naureen R., Gharibreza M, Editor. Springer, Berlin: pp. 1183.

21.        Ashraf, M. A., Maah, M. J. and Yusoff, I. B. (2010). Study of water quality and heavy metals in soil & water of ex-mining area Bestari Jaya, Peninsular Malaysia. International Journal of Basic & Applied Sciences, 10(03): 7-23.

22.        Al-Badaii, F., Shuhaimi-Othman, M. and Gasim, M. B. (2013). Water quality assessment of the Semenyih River, Selangor, Malaysia. Journal of Chemistry, 2013: 1-10.

23.        National Hydraulic Research Institute of Malaysia and Ministry of Natural Resources and Environment. (2015). National Lake Water Quality Criteria and Standards. Malaysia. Access from http://www.nahrim.gov.my/en/publications/listofpublications/1195-national-lake-water-quality-criteria-and-standards.html.

24.        Wetzel, R. G. (2001). Limnology, lake and river ecosystem. Elsvier, United States.

25.        Chapman D. (1996). Water quality assessments - A guide to use of biota, sediments and water in environmental monitoring. University Press, Cambridge. Great Britain: pp. 1-609.

26.        Schmus, W. R. V. (1995). Global earth geophysics: A handbook of physical constants. American Geophysical Union, USA: pp. 1-376.

27.        Kathren, R. L. (1998). NORM sources and their origins. Applied Radiation and Isotopes, 49(3): 149-168.

28.        Boyle, R.W. (1982). Geochemical prospecting for thorium and uranium - Hydrochemical Surveys. Elsevier: pp. 277-315.

29.        Yasir, M. S., Majid, A. A., Yahaya, R., Bahari, I. and Kim, W. S. (2007). Impak aktiviti pemprosesan amang sistem tertutup ke atas kualiti air dan sedimen setempat. Malaysian Journal of Analytical Sciences, 11(2): 370 -378.

30.        World Health Organisation (2011). Guidelines for drinking-water quality. (4th) WHO Press. Switzerland: pp. 1-564.

31.        Majid, A., Umar, S. R., Yahaya, R., Yasir, M. S. and Othman, M. S. (2008). Analisis unsur dan keradioaktifan dalam sampel sedimen Tasik Chini, Pahang Darul Makmur. Malaysian Journal of Analytical Sciences, 12(1): 167-171.

32.        Sharip, Z., Zaki, A. T. A., Shapai, M. A. H. M., Suratman, S. and Shaaban, A. J. (2014). Lakes of Malaysia: Water quality, eutrophication and management. Lakes and Reservoirs: Research and Management,19(2): 130-141.

33.        Water Environment Partnership in Asia. (2008). National water quality standards for Malaysia. Access from http://wepa-db.net/3rd/jp/topic/waterstandard/Malaysia_1_surface.pdf.

34.        Mohamed, C. A. R., Ahmad, Z. and Mon, G. C. (2006). Aktiviti Ra226 dalam sistem aliran sungai lembangan Langat, Selangor. Malaysian Journal of Analytical Sciences, 10(2): 295-302.

35.        United States Environmental Protection Agency (2009). National Primary Drinking Water Regulations. Access from https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.

36.        Ministry of Health Malaysia (2000). National water quality standards for Malaysia.Access from https://environment.com.my/wp-content/uploads/2016/05/Drinking-Water-MOH.pdf.

37.        Moore, J.W. and Ramamoorthy, S. (1984). Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment. Springer-Verlag New York Inc: 1-269.

38.        Greaney, K. M. (2005). An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. Thesis of Master Degree. Heriot-Watt University, Edinburgh, UK.

39.        Hamzah, Z., Saat, A., Bakar, Z. A. and Wood, A. K. (2011). Anthropogenic heavy metals, U-238 and Th-232 profiles in sediments from an abandoned tin mining lake in Malaysia. 3rd International Conference on Chemical, Biological and Environmental Engineering, 2011:75-79.

40.        Singh, K. P., Mohan, D., Singh, V. K. and Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312 (1-4): 14-27.

41.        Gharibreza, M., Ashraf, M. A., Yusoff, I. and Raj, J. K. (2013). An evaluation of Bera Lake (Malaysia) sediment contamination using sediment quality guidelines. Journal of Chemistry, 2013: 1-13.

42.        Karadede, H. and Unlu, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates). Chemosphere, 41: 1371-1376.

43.        United States Environmental Protection Agency (2006). Freshwater Sediment Screening Benchmarks. Access from https://www.epa.gov/sites/production/files/2015-09/documents/r3_btag_fw_sediment_ benchmarks_8-06.pdf

44.        Hamzah, Z., Saat, A., Wood, A. K. and Bakar, Z. A. (2011). Sedimentation, heavy metals profiles and cluster analysis of a former tin mining lake. International Journal of Environmental Science and Development, 2(6): 448-453.

45.        Mei-Wo, Y., Jaffary, N. A. M. and Ahmad, Z. (2011). Radiation hazard from natural radioactivity in the sediment of the East Coast Peninsular Malaysia Exclusive Economic Zone (EEZ). Malaysian Journal of Analytical Sciences, 15(2): 202-121.

 




Previous                    Content                    Next