Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 857 - 866

DOI: 10.17576/mjas-2018-2205-13

 

 

 

IMMOBILIZED METAL AFFINITY CHROMATOGRAPHIC MEMBRANE FOR TRYPSIN SEPARATION

 

(Membran Kromatografi Afiniti Logam Dipegun untuk Pemisahan Tripsin)

 

Sofiah Hamzah1*, Nurul Hidayati Mat Alim1, Nurul Fakhriah Ismail1, Norhafiza Ilyana Yatim2, Nur A’lya Mohd Sani1

 

1School of Ocean Engineering

2School of Marine and Environmental Sciences

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  sofiah@umt.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

As a new technology, Immobilized Metal Affinity Chromatographic Membrane (IMAC) has proven its efficiency for protein purification. It is also a separation technique that use covalently bound chelating compounds on the membrane supports to immobilize metal ions, which serve as affinity ligands for various proteins. This study aims to prepare and characterize highly specific IMAC for trypsin separation. Chitosan and polyethylene glycol were used as modification solutions to impart the membrane porosity and flux recovery ratio (FRR) of IMAC matrix. The modified PSf with chitosan improved its FRR up to 82.11% which indicated that PSf/Chitosan was a suitable matrix for the affinity membrane. Glutaraldehyde and Cu2+ served as crosslinker agents and affinity ligands respectively. Maximum immobilization capacity of Cu2+ occurred at 120 ppm within 60 minutes’ incubation time. The optimum capacity of trypsin adsorption (12.67 mg/cm2) onto IMAC membrane occurred when 0.3 M ionic strength of trypsin solution was used. Desorption of the enzyme by displacing salt of potassium chloride showed the highest trypsin recovery at 72.3%.

 

Keywords:  affinity, chitosan, membrane, trypsin, ultrafiltration

 

Abstrak

Sebagai teknologi baru, Membran Kromatografi Afiniti Logam Dipegun (IMAC) telah membuktikan kecekapannya untuk penulenan protein. Ia juga merupakan teknik pemisahan yang menggunakan sebatian pelekat yang terikat secara kovalen pada membran sokongan untuk pegunkan ion logam, yang berfungsi sebagai ligan afiniti untuk pelbagai protein. Kajian ini bertujuan untuk menyediakan dan mencirikan IMAC yang sangat spesifik untuk pemisahan trypsin. Kitosan dan polietilen glikol digunakan sebagai larutan pengubahsuai bagi meningkatkan keliangan membran dan nisbah pemulihan fluks (FRR) matriks IMAC. PSf yang telah diubah suai dengan kitosan telah meningkatkan FRR sehingga 82.11 % yang menunjukkan bahawa PSf/kitosan adalah matrik yang sesuai untuk membran afiniti. Glutaraldehid dan Cu2+ masing-masing berfungsi sebagai agen silangan dan ligan afiniti. Kapasiti imobilisasi maksimum Cu2+ berlaku pada 120 ppm dalam masa inkubasi selama 60 minit. Kapasiti jerapan trypsin paling optimum (12.67 mg / cm2) ke atas membran IMAC berlaku apabila 0.3M larutan tripsin digunakan. Penyerapan enzim dengan menggunakan garam gantian kalium klorida menunjukkan dapatan tripsin paling tinggi iaitu kira-kira 72.3%.

 

Kata kunci:  afiniti, kitosan, membran, tripsin, penurasan-ultra

 

References

1.       Jianmin, W., Fengna, X. and Qingfu, Y. (2005). Separation and purification of Cry1Ab protein expressed from Bt transgenic plants. Chinese Journal of Analytical Chemistry, 33(7): 927-930.

2.       Yang, P., Chen, C., Wang, Z., Fan, B. and Chen, Z. (1999). A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element to the tobacco class I chitinase gene promoter. The Plant Journal, 18(3): 141-149.

3.       Zou, H., Luo, Q. and Zhou, D. (2001). Affinity membrane chromatography for the analysis and purification of proteins. Journal of Biochemical and Biophysical Methods, 49(1-3): 199-240.

4.       Wu, C. Y., Suen, S. Y., Chen, S. C. and Tzeng, J. H. (2003). Analysis of protein adsorption on regenerated cellulose-based immobilized metal affinity membranes. Journal of Chromatography A, 996 (1-2): 53-70.

5.       Hu, H. L., Wang, M. Y., Chung, C. H. and Suen, S. Y. (2006). Purification of VP3 protein of infectious bursal disease virus using nickel ion immobilized regenerated cellulose-based membranes. Journal of Chromatography B, 840(2): 76-84.

6.       Jiraratananon, R., Chanachai, A. and Huang, R. Y. M. (2002). Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes: II. Analysis of mass transport. Journal of Membrane Science, 199(1-2): 211-222.

7.       Liu, C. X. and Bai, R. B. (2005). Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. Journal of Membrane Science, 267(1-2): 68-77.

8.       Ramesh, B. P. and Gaikar, V. G. (2001). Membrane characteristics as determinant in fouling of UF membranes. Separation Purification Technology, 24(1-2): 23-34.

9.       Gancarz, I., Zniak, G. P., Bryjak, M. and Tylus, W. (2002). Modification of polysulfone membranes. Effect of n-butylamine and allylamine plasma. European Polymer Journal, 38(10): 1937-1946.

10.    Hamzah, S., Ali, N., Mohammad, A. W., Ariffin, M. A. and Ali, A. (2012). Design of Chitosan /PSf self-assembly membrane to mitigate fouling and enhance performance in trypsin separation. Journal of Chemical Technology and Biotechnology, 87(8): 1157-1166.

11.    Ali, A., Yunus, M. R, Awang, M. and Mat, R. (2015). Effect of shear rate on characteristics, performance and morphology of polysulfone blend membranes. Applied Mechanics and Materials, 699: 305-310.

12.    Arvanitoyannis, I., Nakayama, A. and Aiba, S. (1998). Chitosan and gelatin based edible films: State diagrams, mechanical and permeation properties. Carbohydrate Polymer, 37(4): 371-382.

13.    Arvanitoyannis, I. (1999). Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. Journal of Macromolecular Science, Part C, 39(2):205-271.

14.    Sashiwa H. and Aiba S. (2004). Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science (Oxford), 29(9): 887-908.

15.    Sashiwa, H., Fujishima, S. and Yamano, N. (2003). Enzymatic production of n-acetyl-d-glucosamine from chitin. degradation study of n-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carbohydrate Polymer, 51(4): 391-395.

16.    Saxena, S., Gupta, B., Arora, A. and Alam, M. S. (2006). Chitosan-polyetylene glycol coated cotton membranes for wound dressings. Indian Journal of Fibre and Textile Research, 36(3): 272-280.

17.    Bayramoğlu, G. and Yakup, A. M. (2002). Procion green H-4G immobilized on a new IPN hydrogel membrane composed of poly (2-hydroxyethylmethacrylate)/chitosan: preparation and its application to the adsorption of lysozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202 (1): 41-52.

18.    Rana, T. M. (1994). Artificial proteolysis by a metal chelate: Methodology and mechanism. Advanced Inorganic Biochemical, 10: 177-200.

 




Previous                    Content                    Next