Malaysian Journal of
Analytical Sciences Vol 22 No 5 (2018): 857 - 866
DOI:
10.17576/mjas-2018-2205-13
IMMOBILIZED
METAL AFFINITY CHROMATOGRAPHIC MEMBRANE FOR TRYPSIN SEPARATION
(Membran Kromatografi Afiniti Logam Dipegun untuk Pemisahan
Tripsin)
Sofiah Hamzah1*,
Nurul Hidayati Mat Alim1, Nurul Fakhriah Ismail1,
Norhafiza Ilyana Yatim2, Nur A’lya Mohd Sani1
1School of Ocean Engineering
2School of Marine and Environmental Sciences
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: sofiah@umt.edu.my
Received: 16
April 2017; Accepted: 7 March 2018
Abstract
As
a new technology, Immobilized Metal Affinity Chromatographic Membrane (IMAC)
has proven its efficiency for protein purification. It is also a separation
technique that use covalently bound chelating compounds on the membrane
supports to immobilize metal ions, which serve as affinity ligands for various
proteins. This study aims to prepare and characterize highly specific IMAC for
trypsin separation. Chitosan and polyethylene glycol were used as modification
solutions to impart the membrane porosity and flux recovery ratio (FRR) of IMAC
matrix. The modified PSf with chitosan improved its FRR up to 82.11% which
indicated that PSf/Chitosan was a suitable matrix for the affinity membrane.
Glutaraldehyde and Cu2+ served as crosslinker agents and affinity
ligands respectively. Maximum immobilization capacity of Cu2+
occurred at 120 ppm within 60 minutes’ incubation time. The optimum capacity of
trypsin adsorption (12.67 mg/cm2) onto IMAC membrane occurred when
0.3 M ionic strength of trypsin solution was used. Desorption of the enzyme by
displacing salt of potassium chloride showed the highest trypsin recovery at
72.3%.
Keywords: affinity, chitosan, membrane, trypsin,
ultrafiltration
Abstrak
Sebagai teknologi baru, Membran Kromatografi Afiniti Logam
Dipegun (IMAC) telah membuktikan kecekapannya untuk penulenan protein. Ia juga
merupakan teknik pemisahan yang menggunakan sebatian pelekat yang terikat
secara kovalen pada membran sokongan untuk pegunkan ion logam, yang berfungsi
sebagai ligan afiniti untuk pelbagai protein. Kajian ini bertujuan untuk
menyediakan dan mencirikan IMAC yang sangat spesifik untuk pemisahan trypsin.
Kitosan dan polietilen glikol digunakan sebagai larutan pengubahsuai bagi
meningkatkan keliangan membran dan nisbah pemulihan fluks (FRR) matriks IMAC.
PSf yang telah diubah suai dengan kitosan telah meningkatkan FRR sehingga 82.11
% yang menunjukkan bahawa PSf/kitosan adalah matrik yang sesuai untuk membran afiniti.
Glutaraldehid dan Cu2+ masing-masing berfungsi sebagai agen silangan
dan ligan afiniti. Kapasiti imobilisasi maksimum Cu2+ berlaku pada
120 ppm dalam masa inkubasi selama 60 minit. Kapasiti jerapan trypsin paling
optimum (12.67 mg / cm2) ke atas membran IMAC berlaku apabila 0.3M
larutan tripsin digunakan. Penyerapan enzim dengan menggunakan garam gantian
kalium klorida menunjukkan dapatan tripsin paling tinggi iaitu kira-kira 72.3%.
Kata kunci: afiniti, kitosan, membran, tripsin,
penurasan-ultra
References
1.
Jianmin, W., Fengna, X. and Qingfu, Y. (2005). Separation and
purification of Cry1Ab protein expressed from Bt transgenic plants. Chinese Journal of Analytical Chemistry,
33(7): 927-930.
2.
Yang,
P., Chen, C., Wang, Z., Fan, B. and Chen, Z. (1999). A pathogen- and salicylic
acid-induced WRKY DNA-binding activity recognizes the elicitor response element
to the tobacco class I chitinase gene promoter. The Plant Journal, 18(3): 141-149.
3.
Zou,
H., Luo, Q. and Zhou, D. (2001). Affinity membrane chromatography for the
analysis and purification of proteins. Journal of Biochemical and
Biophysical Methods, 49(1-3): 199-240.
4.
Wu,
C. Y., Suen, S. Y., Chen, S. C. and Tzeng, J. H. (2003). Analysis of protein
adsorption on regenerated cellulose-based immobilized metal affinity membranes.
Journal of Chromatography A, 996 (1-2): 53-70.
5.
Hu,
H. L., Wang, M. Y., Chung, C. H. and Suen, S. Y. (2006). Purification of VP3 protein
of infectious bursal disease virus using nickel ion immobilized regenerated
cellulose-based membranes. Journal of Chromatography B, 840(2): 76-84.
6.
Jiraratananon,
R., Chanachai, A. and Huang, R. Y. M. (2002). Pervaporation dehydration of
ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite
membranes: II. Analysis of mass transport. Journal
of Membrane Science, 199(1-2): 211-222.
7.
Liu,
C. X. and Bai, R. B. (2005). Preparation of chitosan/cellulose acetate blend
hollow fibers for adsorptive performance. Journal
of Membrane Science, 267(1-2): 68-77.
8.
Ramesh,
B. P. and Gaikar, V. G. (2001). Membrane characteristics as determinant in
fouling of UF membranes. Separation Purification Technology, 24(1-2): 23-34.
9.
Gancarz,
I., Zniak, G. P., Bryjak, M. and Tylus, W. (2002). Modification of polysulfone
membranes. Effect of n-butylamine and allylamine plasma. European Polymer
Journal, 38(10): 1937-1946.
10.
Hamzah,
S., Ali, N., Mohammad, A. W., Ariffin, M. A. and Ali, A. (2012). Design of Chitosan /PSf self-assembly membrane to
mitigate fouling and enhance performance in trypsin separation. Journal of Chemical Technology and
Biotechnology, 87(8): 1157-1166.
11.
Ali,
A., Yunus, M. R, Awang, M. and Mat, R. (2015). Effect of shear rate on characteristics, performance
and morphology of polysulfone blend membranes. Applied Mechanics and Materials, 699: 305-310.
12.
Arvanitoyannis,
I., Nakayama, A. and Aiba, S. (1998). Chitosan and gelatin based edible films:
State diagrams, mechanical and permeation properties. Carbohydrate Polymer, 37(4):
371-382.
13.
Arvanitoyannis,
I. (1999). Totally and partially biodegradable polymer blends based on natural
and synthetic macromolecules: preparation, physical properties, and potential
as food packaging materials. Journal of Macromolecular Science, Part C, 39(2):205-271.
14.
Sashiwa
H. and Aiba S. (2004). Chemically
modified chitin and chitosan as biomaterials. Progress in Polymer Science (Oxford), 29(9): 887-908.
15.
Sashiwa,
H., Fujishima, S. and Yamano, N. (2003). Enzymatic production of n-acetyl-d-glucosamine from chitin.
degradation study of n-acetylchitooligosaccharide
and the effect of mixing of crude enzymes. Carbohydrate
Polymer, 51(4): 391-395.
16.
Saxena,
S., Gupta, B., Arora, A. and Alam, M. S. (2006). Chitosan-polyetylene glycol
coated cotton membranes for wound dressings. Indian Journal of Fibre and
Textile Research, 36(3): 272-280.
17.
Bayramoğlu,
G. and Yakup, A. M. (2002). Procion green H-4G immobilized on a new IPN hydrogel
membrane composed of poly (2-hydroxyethylmethacrylate)/chitosan: preparation
and its application to the adsorption of lysozyme. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 202 (1): 41-52.
18.
Rana,
T. M. (1994). Artificial proteolysis by a metal chelate: Methodology and mechanism.
Advanced Inorganic Biochemical, 10: 177-200.