Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 768 - 774
DOI:
10.17576/mjas-2018-2205-04
SYNTHESIS AND
PHYSICOCHEMICAL PROPERTIES OF MAGNETITE NANOPARTICLES (Fe3O4)
AS POTENTIAL SOLID SUPPORT FOR HOMOGENEOUS CATALYSTS
(Sintesis dan Sifat Fizikokimia Nanopartikel Magnetit (Fe3O4)
Sebagai Sokongan Padu Berpotensi Bagi Mangkin Homogen)
Wan Fatihah
Khairunisa Wan Nor1, Siti Kamilah Che Soh1*, Alyza Azzura
Abd Rahman Azmi1, Mohd Sukeri Mohd
Yusof 2, Mustaffa Shamsuddin3
1School of Marine and Environmental Sciences
2School of Fundamental Sciences
Universiti
Malaysia Terengganu,21030 Kuala Nerus, Terengganu, Malaysia
3Department of Chemistry, Faculty of Science,
Universiti
Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
*Corresponding
author: sitikamilah@umt.edu.my
Received: 3
May 2018; Accepted: 13 September 2018
Abstract
Black and dark magnetite nanoparticles
(MNPs) were successfully synthesised through a co-precipitation method as a crucial
material to support palladium(II) complexes as they have the potential to become
a stable solid support for homogeneous systems. The two-hour synthesis was done by mixing FeCl3.6H2O
and FeCl2.4H2O in an alkaline medium. To improve the properties of iron
oxide nanoparticles, the process was done under inert conditions. The physicochemical
properties of this support was then characterised using various spectroscopic
techniques such as Fourier Transform Infrared (FTIR) spectroscopy that shows
the X-ray diffraction analysis (XRD), Thermogravimetric analysis (TGA), Field
Emission Scanning Electron Microscope (FESEM), and Vibrating Sample Magnetometer
(VSM). The pore size distribution and the specific BET surface area were
measured by N2 adsorption-desorption
isotherms. The FTIR absorption
spectroscopy was used to confirm the formation of Fe-O bond. The most intense
peak correspond to the (311) crystallographic orientation of the spinel cubic
phase of MNPs shown by XRD pattern result. The particle size of magnetite was
successfully controlled in the range of 20-40 nm. All of the MNPs showed the
superparamagnetic behaviour with high saturation magnetization.
Keywords: magnetite nanoparticles, catalyst support, homogeneous
catalysis, heterogeneous catalysis
Abstrak
Nanopartikel magnetit hitam legap telah berjaya disintesis dengan kaedah pemendakan kerana ianya penting untuk menyokong kompleks paladium(II) dan berpotensi menjadi penyokong padu yang stabil bagi sistem homogen. Sintesis selama dua jam dilakukan dengan mencampurkan FeCl3.6H2O dan FeCl2.4H2O dalam medium beralkali. Bagi meningkatkan sifat nanopartikel oksida besi, persekitaran proses perlu dilakukan dalam keadaan lengai. Sifat fizikokimia penyokong ini telah dicirikan oleh pelbagai teknik spektroskopi seperti Spektroskopi Inframerah (FTIR), Pembelauan Sinar-X (XRD), Analisis Gravimetri Terma (TGA), Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM), dan Magnetometer Getaran Sampel (VSM). Sebaran saiz liang dan luas permukaan BET yang tertentu diukur menggunakan teknik penjerapan dan penyahjerapan N2 isoterma. Serapan FTIR spektroskopi digunakan untuk menentukan pembentukan ikatan Fe-O. Puncak yang paling tinggi merujuk kepada fasa kubik spinel dengan orientasi kristalografik (311) ditunjukkan oleh keputusan corak XRD. Saiz zarah magnetit berjaya dikawal dalam linkungan 20-40 nm. Keseluruhan MNPs menunjukkan sifat ketepuan pemagnetan yang tinggi. Kata kunci: nanopartikel magnetit, sokongan mangkin, pemangkinan
homogen, pemangkinan heterogen References 1.
Lv,
D. and Zhang, M. (2017). O-carboxymethyl chitosan supported heterogeneous
palladium and Ni catalysts for heck reaction. Molecules, 22:150. 2.
Lim,
C. W. and Lee, I. S. (2010). Magnetically recyclable nanocatalyst
systems for the organic reactions. Nano Today, 5: 412-434. 3.
Jin,
X., Zhang, K., Sun, J., Wang, J., Dong, Z., and Li, R. (2012). Magnetite nanoparticles
immobilized salen Pd(II) as a green catalyst for Suzuki reaction. Catalysis Communications, 26: 199-203. 4.
Jusin,
J. W., Aziz, M., Sean, G. P. and Jaafar, J. (2016). Preparation and
characterization of graphene-based magnetic hybrid nanocomposite. Malaysian Journal of Analytical Sciences, 20(1):
149-156. 5.
Alp,
E. and Aydogan, N. (2016). A comparative study: Synthesis of superparamagnetic
iron oxide nanoparticles in air and N2 atmosphere. Colloids and Surface a: Physicochem. Eng.
Aspects, 510: 205-212. 6.
Peternele,
W. S., Fuentes, V. M., Fascineli, M. L., Silva, J. R. D., Silva, R. C., Lucci,
C. M. and Azevedo, R. B. D. (2014). Experimental investigation of the
coprecipitation method: An approach to obtain magnetite and maghemite
nanoparticles with improved properties. Journal
of Nanoparticles, 2014:1-10. 7.
Hariani,
P. L., Faizal, M., Ridwan, M. and Setiabudidaya, D. (2013). Synthesis and properties
of Fe3O4 nanoparticles by co-precipitation method to
removal procion dye. International
Journal of Environmental Science and Development, 4(3): 336-340. 8.
Petcharoen,
K. and Sirivat, A. (2012). Synthesis and characterization of magnetite
nanoparticles via the chemical co-precipitation method. Material Science and Engineering, 177: 421-427. 9.
Khalil,
M. I. (2015). Co-precipitation in aqueous solution synthesis of magnetite
nanoparticles using iron(III) salts as precursors. Arabian Journal of Chemistry, 8: 279-284. 10.
Yazdani,
F. and Seddigh, M. (2016). Magnetite nanoparticles
synthesised by co-precipitation method: The effects of various iron anions on
specifications. Materials Chemistry and
Physics, 184: 318-323. 11.
Miri,
S. S., Khoobi, M., Ashouri, F., Jafarpour, F., Ranjar, P. R. and Shaffiee, A.
(2015). Efficient C-C Cross-coupling reaction by (Isatin)-Schiff base
functionalized magnetic nanoparticle-supported Cu(II) acetate as a magnetically
recoverable catalyst. Turkish Journal of
Chemistry, 39: 1232-1246. 12.
Maity,
D. and Agrawal, D. C. (2007). Synthesis of iron oxide nanoparticles under
oxidizing environment and their stabilization in aqueous and non-aqueous media.
Journal of Magnetism and Magnetic
Materials, 308: 46-55. 13.
Mahdavi,
M., Namvar, F., Ahmad, M. B. and Mohamad, R. (2013). Green biosynthesis and
characterization of magnetic iron oxide (Fe3O4) nanoparticles
using seaweed (Sargassum muticum) aqueous
extract. Molecules,18: 5954-5964. 14.
Mamani,
J. B., Costa-Filho, A. J., Cornejo, D. R., Vieira, E. D. and Gamarra, L. F.
(2013). Synthesis and characterization of magnetite nanoparticles coated with
lauric acid. Materials Characterization, 81:
28-36. 15.
Ma,
J., Wang, L., Wu, Y., Dong, X., Ma, Q., Qiao, C., Zhang, Q. and Zhang, J.
(2014). Facile synthesis of Fe3O4 nanoparticles with a
high specific surface area. Materials
Transactions, 55(12): 1900-1902. 16.
Liu,
X., Kaminski, M.D., Guan, Y., Chen, H., Liu, H. and Rosengart, A.J. (2006).
Preparation and characterization of hydrophobic superparamagnetic magnetite
gel. Journal of Magnetism and Magnetic
Materials, 306: 248-253. 17.
Murbe,
J., Rechtenbach, A. and Topfer, J. (2008). Synthesis and physical
characterization of magnetite nanoparticles for biomedical applications. Materials Chemistry and Physics, 110:
426-433. 18.
Urus, S. (2016). Synthesis of Fe3O4@SiO2@OSi(CH2)3NHRN(CH2PPh2)2PdCl2
type nanocomposite complexes: Highly efficient and magnetically-recoverable
catalysts in vitamin K3 synthesis. Food Chemistry, 213: 336-343. 19.
Shen, M., Yu, Y., Fan, G., Chen, G., Jin, Y. M., Tang, W. and Jia,
W. (2014). The synthesis and characterization of monodispersed chitosan-coated
Fe3O4 nanoparticles via a facile one-step solvothermal
process for adsorption of bovine serum albumin. Nanoscale Research Letters, 9: 296. 20.
Yuan,
P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J.X. and Chen, T.H. (2009).
Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent
chromium [Cr (VI)] from aqueous solutions. Journal
of Hazardous Materials, 166: 821–829. 21.
Esmaeilpour, M., Javidi, J., Dodeji, F. N. and Abarghoui M. M.
(2014). Facile synthesis of 1- and 5-substituted 1H-tetrazoles catalyzed by
recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2
nanoparticles. Journal of Molecular
Catalysis A: Chemical, 393: 18-29. 22.
Chen,
S., Pan, X., Miao, C., Xie, H., Zhou, G., Jiao, Z., Zhang, X. (2017). Study of
catalytic hydrodeoxygenation performance for the Ni/KIT-6 catalysts. Journal of Saudi Chemical Society, 22:
614-627. 23.
Esmaeilpour,
M., Javidi, J., Dodeji, F. N., Abarghoui, M. M. (2014). M(II) schiff base
complexes (M= zinc, manganese, cadmium, cobalt, nickel, iron, and palladium) supported
on superparamagnetic Fe3O4@SiO2
nanoparticles: Synthesis, characterization and catalytic activity for Sonogashira-Hagihara
coupling reactions. Transition Metal
Chemistry, 39: 797-809. 24.
Ruslimie,
C. A., Razali, M. H. and Khairul, W. M. (2010). Effect of HTAB concentration on
the synthesis of nanostructured TiO2 towards its catalytic
activities. Malaysian Journal of
Analytical Sciences, 14(1): 41-49.