Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 758 - 767

DOI: 10.17576/mjas-2018-2205-03

 

 

 

SYNTHESIS, CHARACTERISATION AND EFFECT OF TEMPERATURE ON CORROSION INHIBITION BY THIOSEMICARBAZONE DERIVATIVES AND ITS TIN(IV) COMPLEXES

 

(Sintesis, Pencirian dan Kesan Suhu Perencat Kakisan oleh Ligan Terbitan Tiosemikarbazon dan Kompleks Timah(IV))

 

Nur Nadira Hazani1,2, Nur Nadia Dzulkifli1*, Sheikh Ahmad Izaddin Sheikh Mohd Ghazali1, Yusairie Mohd2, Yang Farina3, Nurul ‘Ain Jamion1

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  nurnadia@ns.uitm.edu.my

 

 

Received: 29 August 2017; Accepted: 5 August 2018

 

 

Abstract

Thiosemicarbazone derivatives and its tin(IV) complexes used in this study were 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc), 2-acetylpyridine 4-methyl-3-thiosemicarbazone (HAcMTSc), 2-acetylpyridine 4-ethyl-3-thiosemicarbazone dichlorophenyltin (Sn(HAcETSc)PhenCl2), and 2-acetylpyridine 4-methyl-3-thiosemicarbazone dichlorophenyltin (Sn(HAcMTSc)PhenCl2). All these title compounds were characterised using an elemental analyser, Fourier-transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), ultraviolet-visible spectroscopy (UV-Vis), and nuclear magnetic resonance (NMR). The efficiency of the synthesised compounds as a corrosion inhibitor of mild steel in 1.0 M HCl was investigated using weight loss technique at different concentrations, 1, 2, and 3 mM, and at a temperature range of 30–60 °C. The thiosemicarbazone ligand and its tin(IV) complexes affirmed the hypothesis where the inhibitor efficiency tends to increase as the inhibitor concentration increases, indicating their potential use as a corrosion inhibitor for mild steel. Moreover, inhibitor efficiency decreases when temperature increases.

 

Keywords:  thiosemicarbazone, corrosion inhibitor, temperature, mild steel

 

Abstrak

Terbitan tiosemikarbazon dan kompleks timah(IV) yang digunakan dalam kajian ini adalah 2-asetilpiridina 4-etil-3-tiosemikarbazon (HAcETSc), 2-asetilpiridina 4-metil-3-tiosemikarbazon (HAcMTSc), 2-asetilpiridina 4-etil-3-tiosemikarbazon dikloridastanum (Sn(HAcETSc)PhenCl2) and 2-asetilpiridina 4-metil-3-tiosemikarbazon dikloridastanum (Sn(HAcMTSc)PhenCl2). Kesemua sebatian telah dicirikan menggunakan analisis unsur, spektroskopi inframerah transformasi Fourier-pantulan keseluruhan dikecilkan (FTIR-ATR), spektroskopi ultralembayung-sinar nampak (UV-Vis) dan resonans magnetik nuklear (NMR). Kecekapan sebatian yang telah disintesis dikaji sebagai perencat kakisan terhadap keluli lembut dalam 1.0 M HCl dengan kepekatan berbeza, 1, 2, dan 3 mM, serta suhu antara 30-60 °C menggunakan kaedah kesusutan berat. Ligan tiosemikarbazon dan kompleks timah(IV) membuktikan hipotesis di mana kecekapan perencat cenderung untuk meningkat apabila kepekatan perencat meningkat, menunjukkan ia berpotensi untuk digunakan sebagai perencat kakisan terhadap keluli lembut. Tambahan lagi, kecekapan perencat menurun apabila suhu meningkat. 

 

Kata kunci:  tiosemikarbazon, perencatan kakisan, suhu, keluli lembut

 

References

1.          Xu, B., Liu, Y., Yin, X., Yang, W. and Chen, Y. (2013). Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corrosion Science, 74: 206-213.

2.          Dariva, C. and Galio, A. (2014). Corrosion Inhibitors–principles, Mechanisms and Applications. Developments in Corrosion Protection, 16: 365-378

3.          Obot, I. B., Macdonald, D. D. and Gasem, Z. M. (2015). Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview. Corrosion Science, 99: 1-30.

4.          Saha, S. K., Ghosh, P., Hens, A., Murmu, N. C. and Banerjee, P. (2015). Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline schiff base corrosion inhibitor. Physica E: Low-Dimensional Systems and Nanostructures, 66: 332-341.

5.          Goulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. and Echevarria, A. (2013). Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corrosion Science, 67: 281-291.

6.          Kassim, K., Kamal, N. K. M. and Fadzil, A. H. (2016). Synthesis, characterization and electochemical studies of 4-methoxybenzoylthiourea derivatives. Malaysian Journal of Analytical Sciences, 20(6): 1311-1317.

7.          Yadav, M., Behera, D. and Kumar, S. (2014). Experimental and theoretical studies on corrosion inhibition of mild steel in hydrochloric acid by thiosemicarbazone of schiff bases. Canadian Metallurgical Quarterly, 53(2): 220-231.

8.          Daoud, D., Douadi, T., Hamani, H., Chafaa, S. and Al-noaimi, M. (2015). Corrosion inhibition of mild steel by two new s-heterocyclic compounds in 1 M HCl : Experimental and computational study. Corrosion Science, 94: 21-37.

9.          John, S., Jeevana, R., Aravindakshan, K. K. and Joseph, A. (2017). Corrosion inhibition of mild steel by N(4)-substituted thiosemicarbazone in hydrochloric acid media. Egyptian Journal of Petroleum, 26(2): 405-412.

10.        Rastogi, R. B., Singh, M. M., Singh, K. and Yadav, M. (2011). Organotin dithiobiurets as corrosion inhibitors for mild steel- dimethyl sulfoxide containing HCl. African Journal of Pure and Applied Chemistry, 5(2): 19-33.

11.        Kurniasih, H., Nurissalam, M., Iswantoro, B., Afriyani, H., Qudus, H. I., and Hadi, S. (2015). The synthesis, characterization and comparative anticorrosion study of some organotin(IV). Oriental Journal of Chemistry, 31(4): 2377-2383.

12.        Rastogi, R. B., Singh, K. and Maurya, J. L. (2012). Synthesis and characterization of organotin(IV) thiobiurets. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42(4): 616–620.

13.        Dzulkifli, N. N., Farina, Y. and Yamin, B. M. (2015). Dysprosium(III) isatin 2-methyl-3-thiosemicarbazone : Synthesis, structural and characterization. Malaysian Journal of Analytical Sciences, 19(3): 541-549.

14.        Netalkar, P. P., Netalkar, S. P., and Revankar, V. K. (2015). Transition metal complexes of thiosemicarbazone: Synthesis, structures and invitro antimicrobial studies. Polyhedron, 100: 215-222.

15.        Sampath, K., Sathiyaraj, S., Raja, G. and Jayabalakrishnan, C. (2013). Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding,  DNA cleavage,  antioxidative and cytotoxic activity. Journal of Molecular Structure, 1046: 82–91.

16.        Parrilha, G. L., Da Silva, J. G., Gouveia, L. F., Gasparoto, A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. and Beraldo, H. (2011). Pyridine-derived thiosemicarbazones and their Tin(IV) complexes with antifungal activity against Candida spp. European Journal of Medicinal Chemistry, 46(5): 1473-1482.

17.        Affan, M. A., Wan, F. S., Ngaini, Z. and Shamsuddin, M. (2009). Synthesis, characterization and biological studies of organotin(iv) complexes of thiosemicarbazone ligand derived from pyruvic acid: X-ray crystal structure of [Me2Sn(PAT)]. Malaysian Journal of Analytical Sciences, 13(1): 63-72.

18.        Venkatesh, K., Rayam, P., Sekhar, K. B. C. and Mukkanti, K. (2016). Synthesis, characterization and biological activity of some new thiosemicarbazide derivatives and their transition metal complexes. International Journal of Applied Biology and Pharmaceutical Technology, 7(1): 258-267.

19.        Abdalla, O., Farina, Y. and Ibrahim, N. (2015). Synthesis, characterization and antibacterial study of copper(II) complexes of thiosemicarbazones. Malaysian Journal of Analytical Sciences, 19(6): 1171-1178.

20.        Singh, H. L., Singh, J. B. and Sharma, K. P. (2012). Synthetic, structural, and antimicrobial studies of organotin(iv) complexes of semicarbazone, thiosemicarbazone derived from 4-hydroxy-3- methoxybenzaldehyde. Research on Chemistry Intermediate, 38: 53-65.

21.        Hashim, N. N. Z. and Kassim, K. (2014). The effect of temperature on mild steel corrosion in 1 M HCl by schiff bases. Malaysian Journal of Analytical Sciences, 18(1): 28-36.

22.        Badr, G. E. (2009). The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media. Corrosion Science, 51(11): 2529-2536.

23.        Muralisankar, M., Sreedharan, R., Sujith, S., Bhuvanesh, N. S. P. and Sreekanth, A. (2017). N(1)-pentyl isatin-N(4)-methyl-N(4)-phenyl thiosemicarbazone (PITSc) as a corrosion inhibitor on mild steel in HCl. Journal of Alloys and Compounds, 695: 171-182.

 




Previous                    Content                    Next