Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 758 - 767
DOI:
10.17576/mjas-2018-2205-03
SYNTHESIS,
CHARACTERISATION AND EFFECT OF TEMPERATURE ON CORROSION INHIBITION BY
THIOSEMICARBAZONE DERIVATIVES AND ITS TIN(IV) COMPLEXES
(Sintesis, Pencirian dan Kesan Suhu Perencat Kakisan oleh
Ligan Terbitan Tiosemikarbazon dan Kompleks Timah(IV))
Nur Nadira
Hazani1,2, Nur Nadia Dzulkifli1*, Sheikh Ahmad Izaddin
Sheikh Mohd Ghazali1, Yusairie Mohd2, Yang Farina3,
Nurul ‘Ain Jamion1
1Faculty of Applied Sciences,
Universiti
Teknologi MARA, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan,
Malaysia
2Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: nurnadia@ns.uitm.edu.my
Received:
29 August 2017; Accepted: 5 August 2018
Abstract
Thiosemicarbazone derivatives and its tin(IV) complexes used in this
study were 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc),
2-acetylpyridine 4-methyl-3-thiosemicarbazone (HAcMTSc), 2-acetylpyridine
4-ethyl-3-thiosemicarbazone dichlorophenyltin (Sn(HAcETSc)PhenCl2),
and 2-acetylpyridine 4-methyl-3-thiosemicarbazone dichlorophenyltin (Sn(HAcMTSc)PhenCl2).
All these title compounds were characterised using an elemental analyser,
Fourier-transform infrared-attenuated total reflectance spectroscopy
(FTIR-ATR), ultraviolet-visible spectroscopy (UV-Vis), and nuclear magnetic
resonance (NMR). The efficiency of the synthesised compounds as a corrosion
inhibitor of mild steel in 1.0 M HCl was investigated using weight loss
technique at different concentrations, 1, 2, and 3 mM, and at a temperature
range of 30–60 °C. The thiosemicarbazone ligand and its tin(IV) complexes
affirmed the hypothesis where the inhibitor efficiency tends to increase as the
inhibitor concentration increases, indicating their potential use as a
corrosion inhibitor for mild steel. Moreover, inhibitor efficiency decreases
when temperature increases.
Keywords:
thiosemicarbazone,
corrosion inhibitor, temperature, mild steel
Abstrak
Terbitan
tiosemikarbazon dan kompleks timah(IV) yang digunakan dalam kajian ini adalah
2-asetilpiridina 4-etil-3-tiosemikarbazon (HAcETSc), 2-asetilpiridina
4-metil-3-tiosemikarbazon (HAcMTSc), 2-asetilpiridina 4-etil-3-tiosemikarbazon
dikloridastanum (Sn(HAcETSc)PhenCl2) and 2-asetilpiridina
4-metil-3-tiosemikarbazon dikloridastanum (Sn(HAcMTSc)PhenCl2).
Kesemua sebatian telah dicirikan menggunakan analisis unsur, spektroskopi
inframerah transformasi Fourier-pantulan keseluruhan dikecilkan (FTIR-ATR),
spektroskopi ultralembayung-sinar nampak (UV-Vis) dan resonans magnetik nuklear
(NMR). Kecekapan sebatian yang telah disintesis dikaji sebagai perencat kakisan
terhadap keluli lembut dalam 1.0 M HCl dengan kepekatan berbeza, 1, 2, dan 3
mM, serta suhu antara 30-60 °C menggunakan kaedah kesusutan berat. Ligan
tiosemikarbazon dan kompleks timah(IV) membuktikan hipotesis di mana kecekapan
perencat cenderung untuk meningkat apabila kepekatan perencat meningkat,
menunjukkan ia berpotensi untuk digunakan sebagai perencat kakisan terhadap
keluli lembut. Tambahan lagi, kecekapan perencat menurun apabila suhu
meningkat.
Kata kunci: tiosemikarbazon, perencatan kakisan, suhu, keluli lembut
References
1.
Xu, B., Liu, Y., Yin, X., Yang, W. and Chen, Y. (2013).
Experimental and theoretical study of corrosion inhibition of
3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corrosion
Science, 74: 206-213.
2.
Dariva, C. and Galio, A. (2014). Corrosion
Inhibitors–principles, Mechanisms and Applications. Developments in
Corrosion Protection, 16: 365-378
3.
Obot, I. B., Macdonald, D. D. and Gasem, Z. M. (2015).
Density functional theory (DFT) as a powerful tool for designing new organic
corrosion inhibitors: Part 1: An overview. Corrosion Science, 99: 1-30.
4.
Saha, S. K., Ghosh, P., Hens, A., Murmu, N. C. and Banerjee,
P. (2015). Density functional theory and molecular dynamics simulation study on
corrosion inhibition performance of mild steel by mercapto-quinoline schiff
base corrosion inhibitor. Physica E: Low-Dimensional Systems and
Nanostructures, 66:
332-341.
5.
Goulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A.,
Rodrigues, C. J. F., Maciel, M. A. M. and Echevarria, A. (2013). Experimental
and theoretical evaluation of semicarbazones and thiosemicarbazones as organic
corrosion inhibitors. Corrosion Science, 67: 281-291.
6.
Kassim, K., Kamal, N. K. M. and Fadzil, A. H. (2016).
Synthesis, characterization and electochemical studies of
4-methoxybenzoylthiourea derivatives. Malaysian
Journal of Analytical Sciences, 20(6):
1311-1317.
7.
Yadav, M., Behera, D. and Kumar, S. (2014). Experimental and
theoretical studies on corrosion inhibition of mild steel in hydrochloric acid
by thiosemicarbazone of schiff bases. Canadian
Metallurgical Quarterly, 53(2): 220-231.
8.
Daoud, D., Douadi, T., Hamani, H., Chafaa, S. and Al-noaimi,
M. (2015). Corrosion inhibition of mild steel by two new s-heterocyclic compounds in 1 M HCl : Experimental and
computational study. Corrosion Science, 94: 21-37.
9.
John, S., Jeevana, R., Aravindakshan, K. K. and Joseph, A.
(2017). Corrosion inhibition of mild steel by N(4)-substituted
thiosemicarbazone in hydrochloric acid media. Egyptian Journal of Petroleum,
26(2): 405-412.
10.
Rastogi, R. B., Singh, M. M., Singh, K. and Yadav, M. (2011).
Organotin dithiobiurets as corrosion inhibitors for mild steel- dimethyl
sulfoxide containing HCl. African Journal
of Pure and Applied Chemistry, 5(2): 19-33.
11.
Kurniasih, H., Nurissalam, M., Iswantoro, B., Afriyani, H.,
Qudus, H. I., and Hadi, S. (2015). The synthesis, characterization and
comparative anticorrosion study of some organotin(IV). Oriental Journal of
Chemistry, 31(4): 2377-2383.
12.
Rastogi, R. B., Singh, K. and Maurya, J. L. (2012). Synthesis
and characterization of organotin(IV) thiobiurets. Synthesis and Reactivity
in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42(4): 616–620.
13.
Dzulkifli, N. N., Farina, Y. and Yamin, B. M. (2015).
Dysprosium(III) isatin 2-methyl-3-thiosemicarbazone : Synthesis, structural and
characterization. Malaysian Journal of Analytical Sciences, 19(3): 541-549.
14.
Netalkar, P. P., Netalkar, S. P., and Revankar, V. K. (2015).
Transition metal complexes of thiosemicarbazone: Synthesis, structures and
invitro antimicrobial studies. Polyhedron, 100: 215-222.
15.
Sampath, K., Sathiyaraj, S., Raja, G. and Jayabalakrishnan,
C. (2013). Mixed ligand ruthenium(III) complexes of benzaldehyde
4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine
co-ligands: Synthesis, DNA binding, DNA
cleavage, antioxidative and cytotoxic
activity. Journal of Molecular Structure, 1046: 82–91.
16.
Parrilha, G. L., Da Silva, J. G., Gouveia, L. F., Gasparoto,
A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. and Beraldo,
H. (2011). Pyridine-derived thiosemicarbazones and their Tin(IV) complexes with
antifungal activity against Candida spp.
European Journal of Medicinal Chemistry, 46(5): 1473-1482.
17.
Affan, M. A., Wan, F. S., Ngaini, Z. and Shamsuddin, M.
(2009). Synthesis, characterization and biological studies of organotin(iv)
complexes of thiosemicarbazone ligand derived from pyruvic acid: X-ray crystal
structure of [Me2Sn(PAT)]. Malaysian
Journal of Analytical Sciences, 13(1):
63-72.
18.
Venkatesh, K., Rayam, P., Sekhar, K. B. C. and Mukkanti, K.
(2016). Synthesis, characterization and biological activity of some new
thiosemicarbazide derivatives and their transition metal complexes. International
Journal of Applied Biology and Pharmaceutical Technology, 7(1): 258-267.
19.
Abdalla, O., Farina, Y. and Ibrahim, N. (2015). Synthesis,
characterization and antibacterial study of copper(II) complexes of
thiosemicarbazones. Malaysian Journal of
Analytical Sciences, 19(6):
1171-1178.
20.
Singh, H. L., Singh, J. B. and Sharma, K. P. (2012).
Synthetic, structural, and antimicrobial studies of organotin(iv) complexes of
semicarbazone, thiosemicarbazone derived from 4-hydroxy-3- methoxybenzaldehyde.
Research on Chemistry Intermediate, 38: 53-65.
21.
Hashim, N. N. Z. and Kassim, K. (2014). The effect of
temperature on mild steel corrosion in 1 M HCl by schiff bases. Malaysian Journal of Analytical Sciences,
18(1): 28-36.
22.
Badr, G. E. (2009). The role of some thiosemicarbazide
derivatives as corrosion inhibitors for C-steel in acidic media. Corrosion
Science, 51(11): 2529-2536.
23.
Muralisankar, M., Sreedharan, R., Sujith, S., Bhuvanesh, N.
S. P. and Sreekanth, A. (2017). N(1)-pentyl
isatin-N(4)-methyl-N(4)-phenyl thiosemicarbazone (PITSc) as
a corrosion inhibitor on mild steel in HCl. Journal of Alloys and Compounds,
695: 171-182.