Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 794 - 806
DOI:
10.17576/mjas-2018-2205-07
Bioaccessibility Assessment
of 232Th and 238U
from Lanthanide Concentrate and Water Leach Purification Residue in Malaysia
(Penilaian
Bio-Kebolehcapaian bagi 232Th Dan 238U dalam Lantanida Pekat dan
Residu Permurnian Larut Resap Air di Malaysia)
Nur
Shahidah Abdul Rashid1*, Um Wooyong1, Yasmin Mohd Idris
Perama2, Amran Ab.Majid2, Khoo Kok Siong2
1Division of Advanced Nuclear Engineering,
Pohang University of Science and
Technology, Pohang, Republic of Korea
2School of Applied Physics, Faculty of Science and
Technology,
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
*Corresponding Author : nurshahidah@postech.ac.kr
Received: 28
September 2017; Accepted: 11 August 2018
Abstract
The aim of this case study was to estimate the
bioaccessibility of 232Th and 238U from
lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas
Advanced Materials Plant by analysing the solubility of these radionuclides in
synthetic gastrointestinal fluids. A DIN in
vitro bioaccessibility method was applied to determine the targeted
radionuclides from the LC and WLP residue, which were further evaluated through
inductively coupled plasma mass spectrometry. 232Th and 238U
concentrations in the gastrointestinal fluids portrayed the maximum amount of
contaminants that were potentially available for intestinal absorption and
transfer into the blood. The maximum concentrations of 232Th in the LC and WLP residue
were 0.1410 ± 0.0331 mg kg-1 and 0.1621 ± 0.1190 mg kg-1,
respectively. As for 238U in the LC and WLP residue during the
intestinal phase for high-risk cases, the maximum concentrations were 0.0558 ±
0.0164 mg kg-1 and 0.0480 ± 0.0213 mg kg-1, respectively.
The maximum bioaccessibility of 232Th and 238U was 0.14 % and
0.93 %, respectively. Based on the assessment, the committed equivalent dose
and committed effective dose of 232Th and 238U were below the United Nations
Scientific Committee on the Effects of Atomic Radiation reference values. Overall, the DIN in vitro bioaccessibility method is feasible to estimate the
solubility of 232Th and 238U from LC and WLP residue, and
is also useful for monitoring and risk assessment purposes for environmental,
health, and contaminated samples.
Keywords: bioaccessibility, thorium, uranium, lanthanide
concentrate, water leach purification
Abstrak
Tujuan kajian ini ialah mengkaji bio-kebolehcapaian 232Th
dan 238U dari sampel lantanida pekat (LC) dan residu pemurnian larut
resap air (WLP) yang terdapat di loji bahan termaju Lynas, dengan kaedah
penentuan melalui kebolehlarutan radionuklid tersebut di dalam cecair sintetik
gastrousus. Sampel
LC dan residu WLP telah menjalani teknik bio-kebolehcapaian in vitro DIN, dan
seterusnya sampel dianalisis menggunakan Spektrometer
Jisim-Gandingan Plasma Teraruh. Kepekatan 232Th dan 238U
dalam cecair gastrousus mewakili jumlah maksimum pencemaran radionuklid yang
berpotensi diserap ke dalam badan melalui usus dan berpindah ke dalam darah.
Kepekatan maksimum 232Th dalam LC dan
residu WLP ialah 0.1410 ± 0.0331 mg kg-1 dan 0.1621 ± 0.1190 mg kg-1.
Bagi 238U dalam LC dan residu WLP
semasa fasa usus bagi kes berisiko tinggi ialah 0.0558 ±
0.0164 mg kg-1 dan 0.0480 ± 0.0213 mg kg-1. Nilai
bio-kebolehcapaian maksimum bagi 232Th dan 238U ialah 0.14% dan 0.93%. Berdasarkan kajian, dos komited setara dan dos
komited berkesan bagi 232Th dan 238U adalah di
bawah nilai rujukan United Nations
Scientific Committee on the Effects of Atomic Radiation. Kesimpulannya,
teknik bio-kebolehcapaian in vitro DIN
sangat berguna untuk menganggar kelarutan 232Th dan 238U
bagi tujuan pemantauan berterusan dan penilaian risiko terhadap alam sekitar,
kesihatan manusia, dan sampel tercemar.
Kata kunci: bio-kebolehcapaian, torium, uranium, lantanida
pekat, permurnian larut resap
References
1.
Charalampides, G. and
Vatalis, K. I. (2015). Global production estimation of rare earth elements and
their environmental impacts on soils. Journal
of Geoscience and Environment Protection, 3(8): 66.
2.
Schmidt, G. (2013). Description
and critical environmental evaluation of the REE refining plant LAMP near
Kuantan/Malaysia. Radiological and non-radiological environmental consequences
of the plant's operation and its wastes.
3.
O'Brien, R., S. and Cooper,
M. B. (1998). Technologically enhanced naturally occurring radioactive material
(NORM): Pathway analysis and radiological impact. Applied Radiation and Isotopes. 49(3):227-239.
4.
Sowby, F., D.
(1965). Radiation protection. Canadian Medical Association Journal, 92(19):
1039.
5.
World Health Organization
(2012). Ionizing radiation, health effects and
protective measures. Access
online http://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protectiv-measures
[Access online 20 April
2016].
6.
Chaney, R. L., Mielke, H.W.
and Sterrett, S. B. (1989). Speciation, mobility and bioavailability of soil
lead. Environmental Geochemistry Health, 11:
105-129.
7.
Calabrese, E. J. and Stanek,
E. J. (1994). Soil ingest ion issues and recommendations. Journal of Environmental Science & Health Part A, 29(3):
517-530.
8.
Omar, N. A., Praveena, S.,
Mohd, A., Ahmad, Z. and Hashim, Z. (2013). Bioavailability of heavy metal in
rice using in vitro digestion model. International Food Research Journal, 20(6):
2979-2985.
9.
Oomen, A. G., Rompelberg, C.
J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H. and Sips, A. J. A.
M. (2003). Development of an in vitro
digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and
Toxicology, 44(3): 0281-0287.
10.
Monachese, M., Burton, J. P.
and Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals
through microbial processes: A potential role for probiotics. Applied and Environmental Microbiology, 78(18):
6397-6404.
11.
Al-Jundi, J., Werner, E.,
Roth, P., Höllriegl, V., Wendler, I. and Schramel, P. (2004). Thorium and
uranium contents in human urine: Influence of age and residential area. Journal of Environmental Radioactivity, 71(1):
61-70.
12.
Van, D., W., Tom, R., Oomen,
A., G., Wragg, J., Cave, Mark, Minekus, Mans, Hack, Alfons and Klinck, B.
(2007). Comparison of five in vitro
digestion models to in vivo experimental results: Lead bioaccessibility in the
human gastrointestinal tract. Journal of
Environmental Science and Health Part A, 42(9): 1203-1211.
13.
Kolo, M. T., Aziz, Siti, A.
A., Khandaker, M., Uddin, A., Khandoker and Amin, Y. M. (2015). Evaluation of
radiological risks due to natural radioactivity around Lynas Advanced Material
Plant environment, Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research, 22(17): 13127-13136.
14.
Wragg, J. and Cave, M.
In-vitro methods for the measurement of the oral bioaccessibility of selected
metals and metalloids in soils: A critical review. R&D Technical Report P5-062/TR/01 Environment Agency: pp.
1-28.
15.
National Toxics Network
(2012). Rare earth and radioactive waste a preliminary waste stream assessment
of the Lynas Advanced Materials Plant, Gebeng, Malaysia.
16.
Pasquale, V., Verdoya, M. and
Chiozzi, P. (2001). Radioactive heat generation and its thermal effects in the
Alps–Apennines boundary zone. Tectonophysics,
331(3): 269-283.
17.
Guo, P., Duan, T., Song, X.,
Xu, J. and Chen, H. (2008). Effects of soil pH and organic matter on
distribution of thorium fractions in soil contaminated by rare-earth
industries. Talanta, 77(2): 624-627.
18.
International Atomic Energy
Agency (2011). Radiation protection and NORM residue management in the
production of rare earths from thorium containing minerals. Safety Reports
Series No. 68.
19.
Langmuir, D. and Herman, J.
S. (1980). The mobility of thorium in natural waters at low temperatures. Geochimica et Cosmochimica Acta, 44(11):1753-1766.
20.
Platford, R. F. and Joshi, S.
R. (1989). Radionuclide partitioning across Great Lakes natural interfaces. Environmental Geology and Water Sciences,
14(3):183-186.
21.
International Commission on
Radiological Protection (2012). ICRP Publication 119: Compendium of Dose
Coefficients Based On ICRP Publication 60. Annal
ICRP, 42(4): 2013.
22.
Johnson, J. R. and Lamothe,
E. S. (1989). A review of the dietary uptake of Th. Health Physics, 56(2): 165-168.
23.
United States
Environmental Protection Agency (2015). Radionuclide basics: Uranium. Access from
https://www.epa.gov/radiation/radionuclide-basics-uranium [Access online 11 Jan
2018].
24.
Hooda, P. S., Henry, C. J.
K., Seyoum, T. A., Armstrong, L., D. M. and Fowler, M. B. (2004). The potential
impact of soil ingestion on human mineral nutrition. Science of the Total Environment, 333(1): 75-87.
25.
Bondietti, E.A. (1974).
Adsorption of U (+ 4) and Th (+ 4) by soil colloids. In Agronomy Abstracts, 23.
26.
Guo, P., Duan, T., Song, X.
and Chen, H. (2007). Evaluation of a sequential extraction for the speciation
of thorium in soils from Baotou area, Inner Mongolia. Talanta, 71(2):778-783.
27.
Reiller, P., Moulin, V.,
Casanova, F. and Dautel, C. (2002). Retention behaviour of humic substances
onto mineral surfaces and consequences upon thorium(IV) mobility: Case of iron
oxides. Applied Geochemistry, 17(12):
1551-1562.
28.
Rand, M., H., Mompean, F.,
J., Perrone, J. and Illemassène, M. (2008). Chemical thermodynamics of thorium.
OECD Publishing, 11: 1-393
29.
Oliver, D. P., McLaughlin, M.
J., Naidu, R., Smith, L. H., Maynard, E. J. and Calder, I. C. (1999). Measuring
Pb bioavailability from household dusts using an in vitro model. Environmental
Science & Technology, 33(24): 4434-4439.
30.
Golev, A., Scott, M.,
Erskine, P. D., Ali, S. H. and Ballantyne, G. R. (2014). Rare earths supply
chains: Current status, constraints and opportunities. Resources Policy. 41: 52-59.
31.
Adams, W. H., Buchholz, J.
R., Christenson, C. W., Johnson, G. L. and Fowler, E. B. (1974). Studies of
plutonium, americium, and uranium in environmental matrices: Los Alamos
Scientific Lab., North Mexico.
32.
Träber, S. C., Höllriegl,
V., Li, W. B., Czeslik, U., Rühm, W., Oeh, U. and Michalke, B. (2014).
Estimating the absorption of soil-derived uranium in humans. Environmental Science & Technology,
48(24): 14721-14727.
33.
Rashid, N. S. A., Sarmani,
S., Majid, A. A., Mohamed, F. and Siong, K. K. (2015). Solubility of 238U
radionuclide from various types of soil in synthetic gastrointestinal fluids
using “USP in vitro” digestion
method. Proceedings of the Nuclear
Science, Technology, and Engineering Conference 2014 (NuSTEC2014).
34.
Agency for Toxic Substances
and Disease Registry (1990). Public health statement for Thorium. Access from
https://www.atsdr.cdc.gov/phs/phs.asp?id=658&tid=121 (21 January 2018).
35.
Agency for Toxic Substances
and Disease Registry (1999). Toxicological profile: Uranium. Access from
https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=440&tid=77 (21 January
2018).
36.
Jacob, P., Pröhl, G.,
Schneider, K. and Voß, J. U. (1997). Machbarkeitsstudie zur Verknüpfung der
Bewertung radiologischer und chemisch-toxischer
Wirkungen von Altlasten: Inst. für
Strahlenschutz.
37.
World Health Organization
(1998). Guidelines for drinking-water quality, Second edition, Addendum to
Volume 2: Health Criteria and Other Supporting Information, WHO/EOS/98.1,
Geneva 1998: pp. 283.
38.
World Health
Organization. (2003). Guidelines
for Drinking Water
Quality, Third edition. Volume 1 – Recommendations
Incorporating first and second addenda: pp. 1-668.
39.
Konietzka, R., Dieter, H. H.
and Voss, J. U. (2005). Vorschlag für einen gesundheitlichen Leitwert für Uran
in Trinkwasser. Umweltmed Forsch Prax, 10(2):133-143.
40.
Oomen, A., G., Hack, A.,
Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G. and Rompelberg, C., J.,
M. (2002). Comparison of five in vitro
digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology,
36(15): 3326-3334.
41.
Jadán, P., Carlos, C., P.,
Marie, J., Devesa, V. and Vélez, D. (2016). Influence of physiological
gastrointestinal parameters on the bioaccessibility of mercury and selenium
from swordfish. Journal of Agricultural
and Food Chemistry, 64(3): 690-698.
42.
Vázquez, M., Calatayud, M.,
Piedra, C. J., Chiocchetti, G. M., Vélez, D. and Devesa, V. (2015). Toxic trace
elements at gastrointestinal level. Food
and Chemical Toxicology. 86:163-175.
43.
Morrow, P. E., Gibb, F. R.
and Beiter, H. D. (1972). Inhalation studies of uranium trioxide. Health Physics, 23(3): 273-280.
44.
Leggett, R. W. and Harrison,
J. D. (1995). Fractional absorption of ingested uranium in humans. Health Physics, 68(4): 484-498.
45.
International Atomic Energy
Agency (1999). Assessment for doses to the public from ingested radionuclides.
IAEA Publishing, Safety Reports Series No. 14.
46.
United Nations Scientific
Committee on the Effects of Atomic Radiation (2000). Sources and effects of
ionizing radiation: sources. United Nations Publications, 1: 1-17.