Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 807 -  816

DOI: 10.17576/mjas-2018-2205-08

 

 

 

PHOTOCATALYTIC DEGRADATION OF PHENOL DERIVATIVES OVER SILVER SUPPORTED ON MESOPOROUS TITANIA NANOPARTICLES

 

(Degradasi Fotomangkin Daripada Terbitan Fenol Ke Atas Perak Disokong Pada Nanopartikel Titania Berliang Meso)

 

Nur Farhana Jaafar1* and Aishah Abdul Jalil2,3

 

1School of Chemical Sciences,

Universiti Sains Malaysia, 11800 USM Penang, Malaysia

2Centre for Hydrogen Energy, Institute of Future Energy

3Department of Chemical Engineering, Faculty of Chemical and Energy Engineering

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  nurfarhana@usm.my

 

 

Received: 15 May 2018; Accepted: 23 July 2018

 

 

Abstract

In this study, the potential of silver supported on mesoporous titania nanoparticles (Ag-MTN) as visible-light-driven photocatalyst was investigated for the degradation of phenol derivatives. Characterisation results illustrated that the presence of Ag reduced the band gap of MTN and increased the number of oxygen vacancies (OV) and Ti3+ site defect (TSD). The presence of both properties is among the important factors that need to be considered for catalyst properties in order to achieve effective photocatalytic degradation under visible light. The photoactivity of the catalyst was also significantly influenced by the presence of Ag, which acted as an electron trap that enhanced electron-hole separation. The ability of Ag-MTN to degrade phenol derivatives [phenol (Ph), 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-diCP), and 4-acetamidophenol (4-AcePh)] was compared with commercial TiO2 and MTN. The percentage degradation of phenol derivatives was in the following order: TiO2 < MTN < Ag-MTN. This indicated that the presence of Ag in MTN effectively enhanced the photoactivity of MTN towards the degradation of phenol derivatives.

 

Keywords:  Ag-MTN catalyst, electron trapper, visible light, phenol derivatives

 

Abstrak

Dalam kajian ini, potensi perak disokong pada nanopartikel titania berliang meso (Ag-MTN) sebagai fotomangkin-pemacu-cahaya nampak telah disiasat bagi degradasi terbitan fenol. Keputusan pencirian menunjukkan kehadiran Ag mengurangkan luang jalur MTN dan meningkatkan bilangan kekosongan oksigen (OV) dan permukaan Ti3+ cacat (TSD). Kehadiran kedua-dua sifat adalah antara faktor penting yang perlu dipertimbangkan bagi sifat mangkin bagi mencapai degradasi fotomangkin yang efektif di bawah cahaya nampak. Fotoaktiviti bagi mangkin juga sangat dipengaruhi dengan kehadiran Ag di mana bertindak sebagai perangkap elektron yang meningkatkan pemisahan elektron-lubang. Keupayaan Ag-MTN untuk degradasi terbitan fenol [fenol (Ph), 2-klorofenol (2-CP), 2,4-diklorofenol (2,4-diCP) dan 4-asetamidofenol (4-AcePh)] telah dibandingkan dengan TiO2 komersial dan MTN. Peratusan degradasi bagi terbitan fenol telah mengikuti susunan: TiO2 < MTN < Ag-MTN. Ini menunjukkan kehadiran Ag dalam MTN berkesan meningkatan fotoaktiviti bagi MTN terhadap degradasi terbitan fenol.

 

Kata kunci:  mangkin Ag-MTN, perangkap elektron, cahaya nampak, terbitan fenol

 

References

1.       Lindholm-Lehto, P. C., Knuutinen, J. S., Ahkola, H. S. and Herve, S. H. (2015). Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environmental Science and Pollution Research22(9): 6473-6499.

2.       Gryglik, D., Miller, J. S. and Ledakowicz, S. (2007). Singlet molecular oxygen application for 2-chlorophenol removal. Journal of Hazardous Materials146(3): 502-507.

3.       Wang, S. L., Tzou, Y. M., Lu, Y. H. and Sheng, G. (2007). Removal of 3-chlorophenol from water using rice-straw-based carbon. Journal of Hazardous Materials147(1-2): 313-318.

4.       Khan, M. Z., Mondal, P. K. and Sabir, S. (2011). Bioremediation of 2-cholorophenol containing wastewater by aerobic granules-kinetics and toxicity. Journal of Hazardous Materials, 190(1-3): 222-228.

5.       Lee, J. S., You, K. H. and Park, C. B. (2012). Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Advanced Materials24(8): 1084-1088.

6.       Jaafar, N. F., Jalil, A. A. and Triwahyono, S. (2017). Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction. Applied Surface Science392: 1068-1077.

7.       Xie, Y., Li, Y., and Zhao, X. (2007). Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped TiO2. Journal of Molecular Catalysis A: Chemical, 277(1): 119-126.

8.       Jaafar, N. F., Jalil, A. A., Triwahyono, S. and Shamsuddin, N. (2015). New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: effect of microwave power density on formation of oxygen vacancies and Ti3+ defects. RSC Advances5(110): 90991-91000.

9.       Tian, J., Liu, R., Wang, G., Xu, Y., Wang, X. and Yu, H. (2014). Dependence of metallic Ag on the photocatalytic activity and photoinduced stability of Ag/AgCl photocatalyst. Applied Surface Science, 319: 324-331.

10.    Jalil, A. A., Triwahyono, S., Razali, N. A. M. Hairom, N. H. H., Idris, A., Muhid, M. N. M., Ismail, A., Yahaya, N. A. M., Ahmad, N. A. L. and Dzinun, H. (2010). Complete electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators. Journal of Hazardous Materials174: 581–585.

11.    Jalil, A. A., Kurono, N. and Tokuda, M. (2002). Facile synthesis of ethyl 2-arylpropenoates by cross-coupling reaction using electrogenerated highly reactive zinc. Tetrahedron, 58: 7477-7484.

12.    Jaafar, N. F., Jalil, A. A., Triwahyono, S., Muhid, M. N. M., Sapawe, N., Satar, M. A. H. and Asaari, H. (2012). Photodecolorization of methyl orange over α-Fe2O3-supported HY catalysts: The effects of catalyst preparation and dealumination. Chemical Engineering Journal, 191:112-122.

13.    Kao, K. C. and Mou, C.Y. (2013). Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Microporous and Mesoporous Materials, 169: 7-15.

14.    Priyadharshini, R. I., Prasannaraj, G., Geetha, N. and Venkatachalam, P. (2014). Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied Biochemistry and Biotechnology, 174(8): 2777-2790.

15.    Das, D. P., Baliarsingh, N. and Parida, K. M. (2007). Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. Journal of Molecular Catalysis A: Chemical, 261(2): 254-261.

16.    Mori, Y. and Pinnavaia, T.J. (2001). Optimizing organic functionality in mesostructured silica: Direct assembly of mercaptopropyl groups in wormhole framework structures. Chemistry of Materials, 13(6): 2173-2178.

17.    Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Lee, J. and Cho, M. H. (2014). Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2(3): 637-644.

18.    Mazinani, B., Masrom, A. K., Beitollahi, A. and Luque, R. (2014). Photocatalytic activity, surface area and phase modification of mesoporous SiO2-TiO2 prepared by a one-step hydrothermal procedure. Ceramics International, 40(8): 11525-11532.

19.    Todan, L., Dascalescu, T., Preda, S., Andronescu, C., Munteanu, C., Culita, D.C., Rusu, A., State, R. and Zaharescu, M. (2014). Porous nanosized oxide powders in the MgO-TiO2 binary system obtained by sol-gel method. Ceramics International, 40(10): 15693-15701.

20.    Jaafar N. F., Jalil A. A., Triwahyono S., Ripin A. and Ali M. W. (2016) Significant effect of pH on photocatalytic degradation of organic pollutants using semiconductor catalysts. Jurnal Teknologi (Sciences & Engineering), 78(8-4): 7-12.

21.    Yan, X. M., Kang, J., Gao, L., Xiong, L. and Mei, P. (2013). Solvothermal synthesis of carbon coated N-doped TiO2 nanostructures with enhanced visible light catalytic activity. Applied Surface Science, 265: 778-783.

22.    Huang, C. N., Bow, J. S., Zheng, Y., Chen, S.Y., Ho, N. J. and Shen, P. (2010). Nonstoichiometric titanium oxides via pulsed laser ablation in water. Nanoscale Research Letters, 5(6): 972-985.

23.    Cheng, B. Le, Y. and Yu, J. (2010). Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. Journal of Hazardous Materials177(1): 971–977.

24.    Liu, H., Ma, H. T., Li, X. Z., Li, W. Z., Wu, M. and Bao, X. H. (2003). The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere50(1): 39-46.

25.    Neppolian, B., Wang, Q., Yamashita, H. and Choi, H. (2007). Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process. Applied Catalysis A: General, 333(2): 264-271.

 




Previous                    Content                    Next