Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 807 - 816
DOI:
10.17576/mjas-2018-2205-08
PHOTOCATALYTIC
DEGRADATION OF PHENOL DERIVATIVES OVER SILVER SUPPORTED ON MESOPOROUS TITANIA
NANOPARTICLES
(Degradasi Fotomangkin Daripada
Terbitan Fenol Ke Atas Perak Disokong Pada Nanopartikel Titania Berliang Meso)
Nur Farhana Jaafar1*
and Aishah Abdul Jalil2,3
1School of Chemical Sciences,
Universiti Sains
Malaysia, 11800 USM Penang, Malaysia
2Centre for
Hydrogen Energy, Institute of Future Energy
3Department of
Chemical Engineering, Faculty of Chemical and Energy Engineering
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding
author: nurfarhana@usm.my
Received:
15 May 2018; Accepted: 23 July 2018
Abstract
In this study, the
potential of silver supported on mesoporous titania nanoparticles (Ag-MTN) as
visible-light-driven photocatalyst was investigated for the degradation of
phenol derivatives. Characterisation results illustrated that the presence of
Ag reduced the band gap of MTN and increased the number of oxygen vacancies
(OV) and Ti3+ site defect (TSD). The presence of both properties is
among the important factors that need to be considered for catalyst properties
in order to achieve effective photocatalytic degradation under visible light.
The photoactivity of the catalyst was also significantly influenced by the
presence of Ag, which acted as an electron trap that enhanced electron-hole
separation. The ability of Ag-MTN to degrade phenol derivatives [phenol (Ph),
2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-diCP), and 4-acetamidophenol
(4-AcePh)] was compared with commercial TiO2 and MTN. The percentage
degradation of phenol derivatives was in the following order: TiO2
< MTN < Ag-MTN. This indicated that the presence of Ag in MTN effectively
enhanced the photoactivity of MTN towards the degradation of phenol
derivatives.
Keywords: Ag-MTN catalyst, electron trapper, visible
light, phenol derivatives
Abstrak
Dalam kajian ini, potensi perak
disokong pada nanopartikel titania berliang meso (Ag-MTN) sebagai
fotomangkin-pemacu-cahaya nampak telah disiasat bagi degradasi terbitan fenol.
Keputusan pencirian menunjukkan kehadiran Ag mengurangkan luang jalur MTN dan
meningkatkan bilangan kekosongan oksigen (OV) dan permukaan Ti3+
cacat (TSD). Kehadiran kedua-dua sifat adalah antara faktor penting yang perlu
dipertimbangkan bagi sifat mangkin bagi mencapai degradasi fotomangkin yang
efektif di bawah cahaya nampak. Fotoaktiviti bagi mangkin juga sangat
dipengaruhi dengan kehadiran Ag di mana bertindak sebagai perangkap elektron
yang meningkatkan pemisahan elektron-lubang. Keupayaan Ag-MTN untuk degradasi
terbitan fenol [fenol (Ph), 2-klorofenol (2-CP), 2,4-diklorofenol (2,4-diCP)
dan 4-asetamidofenol (4-AcePh)] telah dibandingkan dengan TiO2
komersial dan MTN. Peratusan degradasi bagi terbitan fenol telah mengikuti
susunan: TiO2 < MTN < Ag-MTN. Ini menunjukkan kehadiran Ag
dalam MTN berkesan meningkatan fotoaktiviti bagi MTN terhadap degradasi
terbitan fenol.
Kata kunci: mangkin Ag-MTN, perangkap elektron, cahaya
nampak, terbitan fenol
References
1.
Lindholm-Lehto, P. C., Knuutinen, J. S., Ahkola, H. S. and
Herve, S. H. (2015). Refractory organic pollutants and toxicity in pulp and
paper mill wastewaters. Environmental Science and Pollution Research, 22(9): 6473-6499.
2.
Gryglik, D., Miller, J. S. and Ledakowicz, S. (2007). Singlet
molecular oxygen application for 2-chlorophenol removal. Journal of
Hazardous Materials, 146(3):
502-507.
3.
Wang, S. L., Tzou, Y. M., Lu, Y. H. and Sheng, G. (2007).
Removal of 3-chlorophenol from water using rice-straw-based carbon. Journal
of Hazardous Materials, 147(1-2):
313-318.
4.
Khan, M. Z., Mondal, P. K. and Sabir, S.
(2011). Bioremediation of 2-cholorophenol containing wastewater by aerobic
granules-kinetics and toxicity. Journal
of Hazardous Materials, 190(1-3): 222-228.
5.
Lee, J. S., You, K. H. and Park, C. B. (2012). Highly
photoactive, low bandgap TiO2 nanoparticles wrapped by
graphene. Advanced Materials, 24(8): 1084-1088.
6.
Jaafar,
N. F., Jalil, A. A. and Triwahyono, S. (2017).
Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2
nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation
of Ag-Ti interaction. Applied Surface Science, 392: 1068-1077.
7.
Xie, Y., Li, Y., and Zhao, X. (2007). Low-temperature
preparation and visible-light-induced catalytic activity of anatase F-N-codoped
TiO2. Journal of
Molecular Catalysis A: Chemical, 277(1):
119-126.
8.
Jaafar, N. F., Jalil, A. A., Triwahyono, S. and Shamsuddin,
N. (2015). New insights into self-modification of mesoporous titania
nanoparticles for enhanced photoactivity: effect of microwave power density on
formation of oxygen vacancies and Ti3+ defects. RSC Advances, 5(110): 90991-91000.
9.
Tian,
J., Liu, R., Wang, G., Xu, Y., Wang, X. and Yu, H. (2014). Dependence of
metallic Ag on the photocatalytic activity and photoinduced stability of Ag/AgCl
photocatalyst. Applied Surface
Science, 319: 324-331.
10.
Jalil, A. A., Triwahyono, S., Razali, N. A.
M. Hairom, N. H. H., Idris, A., Muhid, M. N. M., Ismail, A., Yahaya, N. A. M.,
Ahmad, N. A. L. and Dzinun, H. (2010). Complete electrochemical dechlorination
of chlorobenzenes in the presence of various arene mediators. Journal
of Hazardous Materials, 174: 581–585.
11.
Jalil,
A. A., Kurono, N. and Tokuda, M. (2002). Facile synthesis of ethyl
2-arylpropenoates by cross-coupling reaction using electrogenerated highly
reactive zinc. Tetrahedron, 58:
7477-7484.
12.
Jaafar, N. F., Jalil, A. A., Triwahyono,
S., Muhid, M. N. M., Sapawe, N., Satar, M. A. H. and Asaari, H. (2012). Photodecolorization
of methyl orange over α-Fe2O3-supported HY catalysts: The
effects of catalyst preparation and dealumination. Chemical Engineering Journal, 191:112-122.
13.
Kao, K. C. and Mou, C.Y. (2013). Pore-expanded mesoporous
silica nanoparticles with alkanes/ethanol as pore expanding agent. Microporous and Mesoporous
Materials, 169: 7-15.
14.
Priyadharshini, R. I., Prasannaraj, G., Geetha, N. and
Venkatachalam, P. (2014). Microwave-mediated extracellular synthesis of
metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its
anticancer activity against human PC3 cell lines. Applied Biochemistry and
Biotechnology, 174(8): 2777-2790.
15.
Das, D. P., Baliarsingh, N. and Parida, K. M. (2007).
Photocatalytic decolorisation of methylene blue (MB) over titania pillared
zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. Journal of Molecular Catalysis A:
Chemical, 261(2): 254-261.
16.
Mori, Y. and Pinnavaia, T.J. (2001). Optimizing organic
functionality in mesostructured silica: Direct assembly of mercaptopropyl
groups in wormhole framework structures. Chemistry
of Materials, 13(6): 2173-2178.
17.
Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Lee,
J. and Cho, M. H. (2014). Band gap engineered TiO2 nanoparticles for
visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2(3):
637-644.
18.
Mazinani, B., Masrom, A. K., Beitollahi, A. and Luque, R.
(2014). Photocatalytic activity, surface area and phase modification of
mesoporous SiO2-TiO2 prepared by a one-step hydrothermal
procedure. Ceramics
International, 40(8):
11525-11532.
19.
Todan, L., Dascalescu, T., Preda, S., Andronescu, C.,
Munteanu, C., Culita, D.C., Rusu, A., State, R. and Zaharescu, M. (2014). Porous
nanosized oxide powders in the MgO-TiO2 binary system obtained by
sol-gel method. Ceramics International, 40(10): 15693-15701.
20. Jaafar
N. F., Jalil A. A., Triwahyono S., Ripin A. and Ali M. W. (2016) Significant
effect of pH on photocatalytic degradation of organic pollutants using
semiconductor catalysts. Jurnal Teknologi (Sciences & Engineering), 78(8-4): 7-12.
21.
Yan, X. M., Kang, J., Gao, L., Xiong, L. and Mei, P. (2013).
Solvothermal synthesis of carbon coated N-doped TiO2 nanostructures
with enhanced visible light catalytic activity. Applied Surface Science,
265: 778-783.
22.
Huang, C. N., Bow, J. S., Zheng, Y., Chen, S.Y., Ho, N. J.
and Shen, P. (2010). Nonstoichiometric titanium oxides via pulsed laser
ablation in water. Nanoscale Research Letters, 5(6): 972-985.
23.
Cheng,
B. Le, Y. and Yu, J. (2010). Preparation and enhanced photocatalytic activity
of Ag@TiO2 core-shell nanocomposite nanowires. Journal
of Hazardous Materials, 177(1): 971–977.
24.
Liu, H., Ma, H. T., Li, X. Z., Li, W. Z., Wu, M. and Bao, X. H.
(2003). The enhancement of TiO2 photocatalytic activity by hydrogen
thermal treatment. Chemosphere, 50(1): 39-46.
25.
Neppolian, B., Wang, Q., Yamashita, H. and Choi, H. (2007).
Synthesis and characterization of ZrO2-TiO2 binary oxide
semiconductor nanoparticles: Application and interparticle electron transfer
process. Applied Catalysis A:
General, 333(2): 264-271.