Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1065 - 1077

DOI: 10.17576/mjas-2018-2206-17

 

 

 

OPTIMIZATION OF ACID DOPED POLYBENZIMIDAZOLE ELECTROLYTE MEMBRANE FOR HIGH-TEMPERATURE PEM FUEL CELL

 

(Pengoptimuman Asid Didopkan Membran Elektrolit Polibenzimidazol untuk Sel Bahan Api PEM Suhu Tinggi)

 

Md Ahsanul Haque1, 2, Abu Bakar Sulong1, 3*, Edy Herianto Majlan1, Kee Shyuan Loh1, Teuku Husaini1, Rosemilia Rosli1

 

1Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Applied Chemistry and Chemical Engineering,

Islamic University, Kushtia-7003, Bangladesh

3Department of Mechanical and Materials Engineering,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  abubakar@ukm.edu.my

 

 

Received: 27 July 2017; Accepted: 28 April 2018

 

 

Abstract

This study optimized the H3PO4 acid doping level (ADL) of polybenzimidazole (PBI) polymer electrolyte membranes using Taguchi method and characterized their ionic conductivity, contour plot and performed statistical regression analysis. Electrochemical impedance spectroscopic (EIS) analysis revealed that PBI copolymer-1 exposed better ionic conductivity among other membranes used. The maximum proton conductivity of PBI copolymer-1was recorded as 6.30 mS/cm at a doping temperature of 130 °C, doping time of 6 hours, and an operating temperature of 160 °C whereby, the optimum parameters were driven from the contour plot and signal to noise ratios effect of variable factors. The ionic conductivity showed differentiable dependency on the ADL and required high operating temperature for maximum conductivity. Therefore, the data recommends that the PBI copolymer-1 may be applicable as a proton exchange membrane for the high-temperature polymer electrolyte membranes fuel cell.  

 

Keywords:  acid doping level, polybenzimidazole, Taguchi method, contour plot, proton conductivity

 

Abstrak

Kajian ini mengoptimumkan tahap pendopan asid H­3PO4 bagi membran polimer elektrolit polibenzimidazol (PBI) menggunakan kaedah Taguchi dan mencirikan kekonduksian elektronik, plot kontur dan melakukan analisis prestasi regresi statistik. Analisis spektroskopi elektrokimia impedans (EIS) membuktikan bahawa kopolimer-1 PBI mendedahkan ionik konduktiviti yang lebih baik berbanding membran lain yang digunakan. Proton konduktiviti maksimum kopolimer-1 PBI direkodkan pada 6.30 mS/cm pada suhu pendopan pada 130 °C, masa pendopan 6 jam, dan masa suhu operasi 160 °C, manakala parameter optimum didorong dari plot kontur dan isyarat kepada kesan nisbah hingar dari faktor variasi. Ionik konduktiviti menunjukkan perbezaan kebergantungan terhadap ADL dan memerlukan suhu operasi yang tinggi untuk konduktiviti yang maksimum. Oleh itu, data mencadangkan bahawa kopolimer-1 PBI berkemungkinan boleh diaplikasi sebagai membran penukaran proton untuk membran polimer elektrolit sel fuel bersuhu tinggi.  

 

Kata kunci:  tahap pendopan asid, polibenzimidazol, kaedah Taguchi, plot kontur, konduktiviti proton

 

References

1.       Sopian, K. and Daud, W. R. W. (2006). Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy31(5): 719-727.

2.       Haque, M. A., Sulong, A. B., Rosli, R. E., Majlan, E. H., Shyuan, L. K. and Mashud, M. A. A. (2015). Measurement of hydrogen ion conductivity through proton exchange membrane. IEEE International WIE Conference: pp. 552-555.

3.       Tang, Z., Ng, H. Y., Lin, J., Wee, A. T. and Chua, D. H. (2010). Pt/CNT-based electrodes with high electrochemical activity and stability for proton exchange membrane fuel cells. Journal of The Electrochemical Society157(2): 245-250.

4.       Shao, Y., Yin, G., Gao, Y. and Shi, P. (2006). Durability study of Pt∕ C and Pt∕ CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society153(6): 1093-1097.

5.       Lufrano, F., Baglio, V., Staiti, P., Arico, A. S. and Antonucci, V. (2006). Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. Desalination199(1-3): 283-285.

6.       Wieser, C. (2004). Novel polymer electrolyte membranes for automotive applications–requirements and benefits. Fuel Cells4(4): 245-250.

7.       Zhang, H. and Shen, P. K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chemical Reviews112(5): 2780-2832.

8.       Jouanneau, J., Mercier, R., Gonon, L. and Gebel, G. (2007). Synthesis of sulfonated polybenzimidazoles from functionalized monomers: Preparation of ionic conducting membranes. Macromolecules40(4): 983-990.

9.       Xing, B., and Savadogo, O. (1999). The effect of acid doping on the conductivity of polybenzimidazole (PBI). Journal of New Materials for Electrochemical Systems2: 95-102.

10.    Haque, M. A., Sulong, A. B., Loh, K. S., Majlan, E. H., Husaini, T. and Rosli, R. E. (2017). Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review. International Journal of Hydrogen Energy42(14): 9156-9179.

11.    Chang, H. Y., and Lin, C. W. (2003). Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells. Journal of Membrane Science218(1): 295-306.

12.    Chang, H. Y., Thangamuthu, R. and Lin, C. W. (2004). Structure–property relationships in PEG/SiO2 based proton conducting hybrid membranes—A29 Si CP/MAS solid-state NMR study. Journal of membrane science228(2): 217-226.

13.    Navessin, T., Eikerling, M., Wang, Q., Song, D., Liu, Z., Horsfall, J., and Holdcroft, S. (2005). Influence of membrane ion exchange capacity on the catalyst layer performance in an operating PEM fuel cell. Journal of the Electrochemical Society152 (4): 796-805.

14.    Thiam, H. S., Daud, W. R. W., Kamarudin, S. K., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan, E. H. (2013). Nafion/Pd–SiO2 nanofiber composite membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy38(22): 9474-9483.

15.    Wang, J., Zhang, H., Jiang, Z., Yang, X. and Xiao, L. (2009). Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. Journal of Power Sources188(1): 64-74.

16.    Kang, S., Zhang, C., Xiao, G., Yan, D., and Sun, G. (2009). Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3′-disulfonate-4,4′-dicarboxylbiphenyl as proton exchange membranes. Journal of Membrane Science334(1): 91-100.

17.    Phadke, M. S. (1995). Quality engineering using robust design. Prentice Hall PTR.

18.    Vankanti, V. K. and Ganta, V. (2014). Optimization of process parameters in drilling of GFRP composite using Taguchi method. Journal of Materials Research and Technology3(1): 35-41.

19.    Leong, J. X., Daud, W. R. W., Ghasemi, M., Ahmad, A., Ismail, M., and Liew, K. B. (2015). Composite membrane containing graphene oxide in sulfonated polyether ether ketone in microbial fuel cell applications. International Journal of Hydrogen Energy40(35): 11604-11614.

20.    Song, X., Ren, S., Yang, Y., Guo, Y., Jing, H., Mao, Q., and Hao, C. (2017). Polyaniline-based electrocatalysts through emulsion polymerization: Electrochemical and electrocatalytic performances. Journal of Energy Chemistry26(1): 182-192.

21.    Yang, J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O., Hjuler, H. A., Bjerrum, N. A. and He, R. H. (2014). High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells14(1): 7-15.

22.    Cobridge, D. E. C. (1995). Phosphorus: an outline of chemistry, biochemistry and uses. Studies in Inorganic Chemistry: pp. 20.

23.    Gopalsamy, B. M., Mondal, B., and Ghosh, S. (2009). Taguchi method and ANOVA: An approach for process parameters optimization ofhard machining while machining hardened steel. Journal of Scientific and Industrial Research, 68(8): 686-695.

24.    Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M. and Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software22(1): 97-103.

25.    Andrews, D. F. (1974). A robust method for multiple linear regression. Technometrics16(4): 523-531.

26.    Suherman, H. (2017). Optimization of internal mixing parameter on the electrical conductivity of multiwall carbon nanotubes/synthetic graphite/epoxy nanocomposites for conductive polymer composites using Taguchi method. Jurnal Kejuruteraan, 29(2): 79-85.

27.    Mahapatra, S. S. and Patnaik, A. (2006). Parametric optimization of wire electrical discharge machining (WEDM) process using Taguchi method. Journal of the Brazilian Society of Mechanical Sciences and Engineering28(4): 422-429.

28.    Kamaruddin, S., Khan, Z. A. and Foong, S. H. (2010). Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend. International Journal of Engineering and Technology2(6): 574-530.

 




Previous                    Content                    Next