Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 1065 - 1077
DOI:
10.17576/mjas-2018-2206-17
OPTIMIZATION
OF ACID DOPED POLYBENZIMIDAZOLE ELECTROLYTE MEMBRANE FOR HIGH-TEMPERATURE PEM
FUEL CELL
(Pengoptimuman
Asid Didopkan Membran Elektrolit Polibenzimidazol untuk Sel Bahan Api PEM Suhu
Tinggi)
Md Ahsanul Haque1,
2, Abu Bakar Sulong1, 3*, Edy Herianto Majlan1, Kee
Shyuan Loh1, Teuku Husaini1, Rosemilia Rosli1
1Fuel Cell Institute,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Applied Chemistry and Chemical
Engineering,
Islamic
University, Kushtia-7003, Bangladesh
3Department of Mechanical and Materials Engineering,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: abubakar@ukm.edu.my
Received: 27
July 2017; Accepted: 28 April 2018
Abstract
This study optimized the H3PO4
acid doping level (ADL) of polybenzimidazole (PBI) polymer electrolyte
membranes using Taguchi method and characterized their ionic conductivity,
contour plot and performed statistical regression analysis. Electrochemical
impedance spectroscopic (EIS) analysis revealed that PBI copolymer-1 exposed
better ionic conductivity among other membranes used. The maximum proton
conductivity of PBI copolymer-1was recorded as 6.30 mS/cm at a doping
temperature of 130 °C, doping time of 6 hours, and an operating temperature of
160 °C whereby, the optimum parameters were driven from the contour plot and
signal to noise ratios effect of variable factors. The ionic conductivity
showed differentiable dependency on the ADL and required high operating
temperature for maximum conductivity. Therefore, the data recommends that the
PBI copolymer-1 may be applicable as a proton exchange membrane for the
high-temperature polymer electrolyte membranes fuel cell.
Keywords: acid
doping level, polybenzimidazole, Taguchi method, contour plot, proton
conductivity
Abstrak
Kajian ini
mengoptimumkan tahap pendopan asid H3PO4 bagi membran
polimer elektrolit polibenzimidazol (PBI) menggunakan kaedah Taguchi dan
mencirikan kekonduksian elektronik, plot kontur dan melakukan analisis prestasi
regresi statistik. Analisis spektroskopi elektrokimia impedans (EIS)
membuktikan bahawa kopolimer-1 PBI mendedahkan ionik konduktiviti yang lebih
baik berbanding membran lain yang digunakan. Proton konduktiviti maksimum
kopolimer-1 PBI direkodkan pada 6.30 mS/cm pada suhu pendopan pada 130 °C, masa
pendopan 6 jam, dan masa suhu operasi 160 °C, manakala parameter optimum
didorong dari plot kontur dan isyarat kepada kesan nisbah hingar dari faktor
variasi. Ionik konduktiviti menunjukkan perbezaan kebergantungan terhadap ADL
dan memerlukan suhu operasi yang tinggi untuk konduktiviti yang maksimum. Oleh
itu, data mencadangkan bahawa kopolimer-1 PBI berkemungkinan boleh diaplikasi
sebagai membran penukaran proton untuk membran polimer elektrolit sel fuel
bersuhu tinggi.
Kata kunci: tahap
pendopan asid, polibenzimidazol, kaedah Taguchi, plot kontur, konduktiviti
proton
References
1. Sopian,
K. and Daud, W. R. W. (2006). Challenges and future developments in proton
exchange membrane fuel cells. Renewable Energy, 31(5): 719-727.
2. Haque,
M. A., Sulong, A. B., Rosli, R. E., Majlan, E. H., Shyuan, L. K. and Mashud, M.
A. A. (2015). Measurement of hydrogen ion conductivity through proton exchange
membrane. IEEE International WIE Conference:
pp. 552-555.
3. Tang,
Z., Ng, H. Y., Lin, J., Wee, A. T. and Chua, D. H. (2010). Pt/CNT-based
electrodes with high electrochemical activity and stability for proton exchange
membrane fuel cells. Journal of The Electrochemical Society, 157(2): 245-250.
4. Shao,
Y., Yin, G., Gao, Y. and Shi, P. (2006). Durability study of Pt∕ C and Pt∕ CNTs
catalysts under simulated PEM fuel cell conditions. Journal of the
Electrochemical Society, 153(6):
1093-1097.
5. Lufrano,
F., Baglio, V., Staiti, P., Arico, A. S. and Antonucci, V. (2006). Development
and characterization of sulfonated polysulfone membranes for direct methanol
fuel cells. Desalination, 199(1-3): 283-285.
6. Wieser,
C. (2004). Novel polymer electrolyte membranes for automotive
applications–requirements and benefits. Fuel Cells, 4(4): 245-250.
7. Zhang,
H. and Shen, P. K. (2012). Recent development of polymer electrolyte membranes
for fuel cells. Chemical Reviews, 112(5): 2780-2832.
8. Jouanneau,
J., Mercier, R., Gonon, L. and Gebel, G. (2007). Synthesis of sulfonated
polybenzimidazoles from functionalized monomers: Preparation of ionic
conducting membranes. Macromolecules, 40(4): 983-990.
9. Xing,
B., and Savadogo, O. (1999). The effect of acid doping on the conductivity of
polybenzimidazole (PBI). Journal of New Materials for Electrochemical
Systems, 2: 95-102.
10. Haque,
M. A., Sulong, A. B., Loh, K. S., Majlan, E. H., Husaini, T. and Rosli, R. E.
(2017). Acid doped polybenzimidazoles based membrane electrode assembly for
high temperature proton exchange membrane fuel cell: A review. International
Journal of Hydrogen Energy, 42(14):
9156-9179.
11. Chang,
H. Y., and Lin, C. W. (2003). Proton conducting membranes based on PEG/SiO2
nanocomposites for direct methanol fuel cells. Journal of Membrane
Science, 218(1):
295-306.
12. Chang,
H. Y., Thangamuthu, R. and Lin, C. W. (2004). Structure–property relationships
in PEG/SiO2 based proton conducting hybrid membranes—A29 Si
CP/MAS solid-state NMR study. Journal of membrane science, 228(2): 217-226.
13. Navessin,
T., Eikerling, M., Wang, Q., Song, D., Liu, Z., Horsfall, J., and Holdcroft, S.
(2005). Influence of membrane ion exchange capacity on the catalyst layer
performance in an operating PEM fuel cell. Journal of the
Electrochemical Society, 152 (4):
796-805.
14. Thiam,
H. S., Daud, W. R. W., Kamarudin, S. K., Mohamad, A. B., Kadhum, A. A. H., Loh,
K. S. and Majlan, E. H. (2013). Nafion/Pd–SiO2 nanofiber composite
membranes for direct methanol fuel cell applications. International
Journal of Hydrogen Energy, 38(22):
9474-9483.
15. Wang,
J., Zhang, H., Jiang, Z., Yang, X. and Xiao, L. (2009). Tuning the performance
of direct methanol fuel cell membranes by embedding multifunctional inorganic
submicrospheres into polymer matrix. Journal of Power Sources, 188(1): 64-74.
16. Kang,
S., Zhang, C., Xiao, G., Yan, D., and Sun, G. (2009). Synthesis and properties
of soluble sulfonated polybenzimidazoles from
3,3′-disulfonate-4,4′-dicarboxylbiphenyl as proton exchange membranes. Journal
of Membrane Science, 334(1):
91-100.
17. Phadke,
M. S. (1995). Quality engineering
using robust design. Prentice Hall PTR.
18. Vankanti,
V. K. and Ganta, V. (2014). Optimization of process parameters in drilling of
GFRP composite using Taguchi method. Journal of Materials Research and
Technology, 3(1):
35-41.
19. Leong,
J. X., Daud, W. R. W., Ghasemi, M., Ahmad, A., Ismail, M., and Liew, K. B.
(2015). Composite membrane containing graphene oxide in sulfonated polyether
ether ketone in microbial fuel cell applications. International Journal
of Hydrogen Energy, 40(35):
11604-11614.
20. Song,
X., Ren, S., Yang, Y., Guo, Y., Jing, H., Mao, Q., and Hao, C. (2017). Polyaniline-based
electrocatalysts through emulsion polymerization: Electrochemical and
electrocatalytic performances. Journal of Energy Chemistry, 26(1): 182-192.
21. Yang,
J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O.,
Hjuler, H. A., Bjerrum, N. A. and He, R. H. (2014). High molecular weight
polybenzimidazole membranes for high temperature PEMFC. Fuel Cells, 14(1): 7-15.
22. Cobridge,
D. E. C. (1995). Phosphorus: an outline of chemistry, biochemistry and
uses. Studies in Inorganic Chemistry: pp. 20.
23. Gopalsamy,
B. M., Mondal, B., and Ghosh, S. (2009). Taguchi method and ANOVA: An approach
for process parameters optimization ofhard machining while machining hardened
steel. Journal of Scientific and
Industrial Research, 68(8): 686-695.
24. Sousa,
S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M. and Pereira, M. C. (2007).
Multiple linear regression and artificial neural networks based on principal
components to predict ozone concentrations. Environmental Modelling
& Software, 22(1):
97-103.
25. Andrews, D. F. (1974). A robust method for
multiple linear regression. Technometrics, 16(4): 523-531.
26. Suherman,
H. (2017). Optimization of internal mixing parameter on the electrical
conductivity of multiwall carbon nanotubes/synthetic graphite/epoxy nanocomposites
for conductive polymer composites using Taguchi method. Jurnal Kejuruteraan, 29(2): 79-85.
27. Mahapatra,
S. S. and Patnaik, A. (2006). Parametric optimization of wire electrical
discharge machining (WEDM) process using Taguchi method. Journal of the
Brazilian Society of Mechanical Sciences and Engineering, 28(4): 422-429.
28. Kamaruddin,
S., Khan, Z. A. and Foong, S. H. (2010). Application of Taguchi method in the
optimization of injection moulding parameters for manufacturing products from
plastic blend. International Journal of Engineering and Technology, 2(6): 574-530.