Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1057 - 1064

DOI: 10.17576/mjas-2018-2206-16

 

 

 

EFFECTS OF FIBRE SIZE ON Sansevieria trifasciata/NATURAL RUBBER/ HIGH DENSITY POLYETHYLENE BIOCOMPOSITES

 

(Kesan Saiz Serat Terhadap Biokomposit Sansevieria trifasciata/Getah Asli/ Polietilena Berketumpatan Tinggi)

 

Nurzam Ezdiani Zakaria1,2, Ishak Ahmad1,3, Wan Zarina Wan Mohamad2, Azizah Baharum1,3*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Food Processing and Packaging Programme, Food Science Technology Research Centre,

Malaysian Agricultural Research and Development Institute,P.O Box 12301 General Post Office,

50774 Kuala Lumpur, Malaysia

3Polymer Research Centre, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: azeiss@ukm.edu.my

 

 

Received: 27 July 2017; Accepted: 28 April 2018

 

 

Abstract

This research was done to study the effects of different fibre sizes (1 mm, 500 µm, 250 µm and 125 µm) on the mechanical, morphological and thermal properties of Sansevieria trifasciata fibre/natural rubber/high density polyethylene (STF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer machine. The processing parameters used were 135 °C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF. The composite blends obtained were pressed with a hot press machine to get test samples of 1 mm and 3 mm in thickness. Samples were evaluated via tensile tests, Izod impact test and differential scanning calorimeter (DSC). Morphological studies were carried out via scanning electron microscope (SEM). Results showed that tensile strength and impact strength decreased while tensile modulus increased when filler loading increased. Smaller particle size will give more interfacial interaction between fibre and matrix. Adding a higher amount of filler will also increase the viscosity and the stiffness of the materials. Overall, it showed that 125 µm of fibre size has given higher values/stable results of tensile strength and modulus. Thermal behaviour of the materials was not affected much by fibre size.

 

Keywords:  polymer composites, fibre size, natural fibre, mechanical properties, thermal properties

 

Abstrak

Kajian ini dilakukan untuk mengkaji kesan perbezaan saiz serat (1 mm, 500 µm, 250 µm and 125 µm) ke atas sifat mekanikal, morfologi dan terma komposit Sansevieria trifasciata/getah asli/polietilena ketumpatan tinggi (STF/NR/HDPE). Pemprosesan komposit STF/NR/HDPE dilakukan dengan menggunakan mesin pengadun dalaman. Parameter pemprosesan yang digunakan adalah 135°C untuk suhu dan kelajuan rotor pada 55 rpm selama 15 minit. Penambahan pengisi telah divariasikan antara 10% hingga 40% STF. Adunan komposit yang terhasil ditekan dengan mesin penekan panas untuk mendapatkan sampel ujian berketebalan 1 mm dan 3 mm. Sampel dinilai melalui ujian regangan, ujian hentaman Izod dan kalorimetri pengimbasan berbeza (DSC). Kajian morfologi dijalankan dengan menggunakan SEM. Keputusan menunjukkan bahawa kekuatan regangan dan kekuatan hentaman menurun manakala modulus regangan meningkat dengan penambahan pengisi. Saiz partikel pengisi yang lebih kecil akan memberi interaksi antaramuka yang lebih baik antara serat dan matriks. Penambahan pengisi juga akan meningkatkan kelikatan dan kekakuan bahan. Secara keseluruhannya, keputusan menunjukkan bahawa saiz serat 125 µm telah memberikan nilai yang lebih tinggi atau keputusan yang lebih stabil bagi kekuatan regangan dan modulus. Sifat terma bahan pula didapati tidak banyak dipengaruhi oleh perbezaan saiz serat yang digunakan.

 

Kata kunci:  komposit polimer, saiz serat, serat semula jadi, sifat mekanik, sifat terma

 

References

1.       Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites: Part B, 42: 856-873.

2.       Sreenivasan, V. S., Ravindran, D., Manikandan, V. and Narayanasamy R. (2011). Mechanical properties of randomly oriented short Sansevieria cylindrica fiber/polyester composites. Materials and Design, 32: 2444-2455.

3.       Faruk, O., Bledzki, A. K., Fink, H. P. and Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37: 1552-1596.

4.       Sameer, B. R. K., Kumar, M. A, Murthy, V. N. and Karthikeyan N. (2015).  Development of Sansevieria trifasciata-carbon fiber reinforced polymer hybrid nanocomposites. International Letters of Chemistry, Physics and Astronomy, 50: 179-187.

5.       Sreenivasan, V. S., Somasundaram, S., Ravindran, D., Manikandan, V. and Narayanasamy, R. (2011). Microstructural, physico-chemical and mechanical characterization of Sansevieria cylindrica fibres – An exploratory investigation. Materials and Design, 32: 453-461.

6.       Singha, A. S. and Rana, R. K. (2012).  Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Materials and Design, 41: 289-297.

7.       Sreenivasan, V. S., Rajini, N., Alvudeen, A. and Arumugaprabu, V. (2015). Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment. Composites: Part B, 69: 76-86.

8.       Ramanaiah, K., Prasad, A. R. and Reddy, K. H. C. (2013). Mechanical, thermophysical and fire properties of sansevieria fiber-reinforced polyester composites. Materials & Design, 49: 986-991.

9.       Kanimozhi M. (2011). Investigating the physical characteristics of Sansevieria trifasciata fibre. International Journal of Scientific and Research Publications, 1: 1-4.

10.    Hanafi, I., Nizam, J. M. and Abdul Khalil, H. P. S. (2001). The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polymer Testing, 20: 125-133.

11.    Fu, S. Y., Feng, X. Q, Lauke, B. and Mai Y. W. (2008). Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites: Part B, 39: 933-961.

12.    Sahin, S. and Yayla P. (2005). Effects of testing parameters on the mechanical properties of polypropylene random copolymer. Polymer Testing, 24: 613-619.

13.    Goosey, M. (1999). Plastics for electronics. Springer-Science-Business Media, United Kingdom: pp. 19-21.

 

 




Previous                    Content                    Next