Malaysian Journal of
Analytical Sciences Vol 22 No 6 (2018): 1057 - 1064
DOI:
10.17576/mjas-2018-2206-16
EFFECTS OF FIBRE
SIZE ON Sansevieria trifasciata/NATURAL
RUBBER/ HIGH DENSITY POLYETHYLENE BIOCOMPOSITES
(Kesan Saiz Serat Terhadap Biokomposit Sansevieria trifasciata/Getah
Asli/ Polietilena Berketumpatan Tinggi)
Nurzam Ezdiani Zakaria1,2, Ishak Ahmad1,3, Wan Zarina Wan Mohamad2, Azizah Baharum1,3*
1School of Chemical Sciences and Food Technology,
Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Food Processing and Packaging Programme, Food Science Technology
Research Centre,
Malaysian Agricultural Research and Development
Institute,P.O Box 12301 General Post Office,
50774 Kuala Lumpur, Malaysia
3Polymer Research Centre, Faculty of Science and
Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
*Corresponding author: azeiss@ukm.edu.my
Received: 27
July 2017; Accepted: 28 April 2018
Abstract
This research was done to
study the effects of different fibre sizes (1 mm, 500 µm, 250 µm and 125 µm) on
the mechanical, morphological and thermal properties of Sansevieria trifasciata fibre/natural rubber/high density
polyethylene (STF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was
done by using an internal mixer machine. The processing parameters used were
135 °C for temperature and a mixing rotor speed of 55 rpm for 15 minutes.
Filler loading was varied from 10% to 40% of STF. The composite blends obtained
were pressed with a hot press machine to get test samples of 1 mm and 3 mm in
thickness. Samples were evaluated via
tensile tests, Izod impact test and differential
scanning calorimeter (DSC). Morphological studies were carried out via scanning electron microscope (SEM).
Results showed that tensile strength and impact strength decreased while
tensile modulus increased when filler loading increased. Smaller particle size
will give more interfacial interaction between fibre and matrix. Adding a
higher amount of filler will also increase the viscosity and the stiffness of
the materials. Overall, it showed that 125 µm of fibre size has given higher
values/stable results of tensile strength and modulus. Thermal behaviour of the
materials was not affected much by fibre size.
Keywords: polymer
composites, fibre size,
natural fibre, mechanical
properties, thermal properties
Abstrak
Kajian ini dilakukan untuk mengkaji kesan
perbezaan saiz serat (1 mm, 500 µm, 250 µm and 125 µm) ke
atas sifat mekanikal, morfologi dan terma komposit Sansevieria trifasciata/getah asli/polietilena ketumpatan tinggi
(STF/NR/HDPE). Pemprosesan komposit STF/NR/HDPE dilakukan dengan menggunakan
mesin pengadun dalaman. Parameter pemprosesan yang digunakan adalah 135°C untuk
suhu dan kelajuan rotor pada 55 rpm selama 15 minit. Penambahan pengisi telah
divariasikan antara 10% hingga 40% STF. Adunan komposit yang terhasil ditekan
dengan mesin penekan panas untuk mendapatkan sampel ujian berketebalan 1 mm dan
3 mm. Sampel dinilai melalui ujian regangan, ujian hentaman Izod dan kalorimetri
pengimbasan berbeza (DSC). Kajian morfologi dijalankan dengan menggunakan SEM.
Keputusan menunjukkan bahawa kekuatan regangan dan kekuatan hentaman menurun
manakala modulus regangan meningkat dengan penambahan pengisi. Saiz partikel
pengisi yang lebih kecil akan memberi interaksi antaramuka yang lebih baik
antara serat dan matriks. Penambahan pengisi juga akan meningkatkan kelikatan
dan kekakuan bahan. Secara keseluruhannya, keputusan menunjukkan bahawa saiz
serat 125 µm telah memberikan nilai yang lebih tinggi atau keputusan yang lebih
stabil bagi kekuatan regangan dan modulus. Sifat terma bahan pula didapati
tidak banyak dipengaruhi oleh perbezaan saiz serat yang digunakan.
Kata
kunci: komposit polimer, saiz serat, serat semula jadi, sifat
mekanik, sifat terma
References
1.
Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada,
M. (2011). A review on the tensile properties of natural fiber reinforced
polymer composites. Composites: Part B,
42: 856-873.
2.
Sreenivasan, V. S., Ravindran, D., Manikandan, V.
and Narayanasamy R. (2011). Mechanical properties of randomly oriented short Sansevieria cylindrica fiber/polyester composites. Materials and Design, 32: 2444-2455.
3.
Faruk, O., Bledzki, A. K., Fink, H. P. and Sain, M.
(2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37:
1552-1596.
4.
Sameer, B. R. K., Kumar, M. A, Murthy, V. N. and
Karthikeyan N. (2015). Development of Sansevieria trifasciata-carbon fiber
reinforced polymer hybrid nanocomposites. International
Letters of Chemistry, Physics and Astronomy, 50: 179-187.
5.
Sreenivasan, V. S., Somasundaram, S., Ravindran, D.,
Manikandan, V. and Narayanasamy, R. (2011). Microstructural, physico-chemical
and mechanical characterization of Sansevieria
cylindrica fibres – An exploratory investigation. Materials and Design, 32: 453-461.
6.
Singha, A. S. and Rana, R. K. (2012). Natural fiber reinforced polystyrene
composites: Effect of fiber loading, fiber dimensions and surface modification
on mechanical properties. Materials and
Design, 41: 289-297.
7.
Sreenivasan, V. S., Rajini, N., Alvudeen, A. and
Arumugaprabu, V. (2015). Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester
composite: Effect of fiber length, fiber loading and chemical treatment. Composites: Part B, 69: 76-86.
8.
Ramanaiah, K., Prasad, A. R. and Reddy, K. H. C.
(2013). Mechanical, thermophysical and fire properties of sansevieria
fiber-reinforced polyester composites. Materials
& Design, 49: 986-991.
9.
Kanimozhi M. (2011). Investigating the physical
characteristics of Sansevieria
trifasciata fibre. International
Journal of Scientific and Research Publications, 1: 1-4.
10.
Hanafi, I., Nizam, J. M. and Abdul Khalil, H. P. S.
(2001). The effect of a compatibilizer on the mechanical properties and mass
swell of white rice husk ash filled natural rubber/linear low density
polyethylene blends. Polymer Testing,
20: 125-133.
11.
Fu, S. Y., Feng, X. Q, Lauke, B. and Mai Y. W.
(2008). Effect of particle size, particle/matrix interface adhesion and
particle loading on mechanical properties of particulate-polymer composites. Composites: Part B, 39: 933-961.
12.
Sahin, S. and Yayla P. (2005). Effects of testing
parameters on the mechanical properties of polypropylene random copolymer. Polymer Testing, 24: 613-619.
13.
Goosey, M. (1999). Plastics for electronics.
Springer-Science-Business Media, United Kingdom: pp. 19-21.