Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 1084 - 1089
DOI:
10.17576/mjas-2018-2206-19
THE
INFLUENCE OF GROWTH TEMPERATURE ON THE PROPERTIES OF ZINC OXIDE BY THERMAL
OXIDATION
(Kesan Suhu Pertumbuhan Ke Atas Sifat-Sifat Zink Oksida Menggunakan
Pengoksidaan Haba)
Nuraini
Abdullah*, Noor Mazni Ismail, Dewan Muhammad Nuruzzaman
Faculty
of Manufacturing Engineering,
Universiti
Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
*Corresponding
author: nuraini.abdullah89@yahoo.com
Received: 2
April 2018; Accepted: 31 July 2018
Abstract
Zinc thin films
were successfully deposited on Si substrate by thermal evaporation method under
constant base pressure of 1.604 x10-4 Pa. Thermal oxidation of the
deposited film was carried out at two different growth temperatures of 300 oC
and 500 oC. The effects of growth temperature on the properties of
zinc oxide were investigated. Thermal
oxidation was carried out in a horizontal tube furnace in air condition for
constant time one hour. After thermal oxidation at temperature 500 oC,
the white-silver zinc thin films were changed to black-brown zinc oxide. FESEM
results show that the zinc particles were almost round shape with
nanostructures in size. ZnO nanocrystals were successfully obtained at low
growth temperature of 300 oC and the size of nanowires decreased as
the growth temperature was increased to 500 oC. The XRD results
confirmed that ZnO started to oxidize at growth temperature of 300 oC
with the sharpest peak obtained indexed to ZnO(101). However, the oxidation of
Zn was not fully completed while Zn peaks appeared at this temperature. At
growth temperature 500 oC, all the peaks were indexed to ZnO with
the sharpest peak was ZnO(101) meaning that the oxidation was completed. The
calculated crystallite sizes were varied from 27.841 nm to 36.788 nm for ZnO at
300 °C and 0.697 nm to 161.18 nm for ZnO at 500 °C.
Keywords:
zinc oxide, silicon, thermal evaporation,
thermal oxidation
Abstrak
Filem nipis zink
telah berjaya didepositkan pada substrak Si oleh kaedah penyejatan haba di bawah tekanan asas tetap 1.604x10-4
Pa. Pengoksidaan termal telah dijalankan ke atas filem yang
telah didepositkan pada dua suhu yang berbeza iaitu 300 oC dan 500 oC.
Kesan suhu pertumbuhan pengoksidaan telah disiasat terhadap sifat zink
oksida. Pengoksidaan termal untuk masa malar 1 jam dalam relau tiub mendatar
dalam kehadiran udara telah dijalankan. Filem nipis zink putih diubah menjadi
zink oksida hitam coklat selepas pengoksidaan haba pada suhu 500 oC.
Keputusan FESEM menunjukkan bahawa zarah zink hampir membentuk bulat dengan saiz
nanostruktur. Nanokristal ZnO telah berjaya diperoleh pada suhu pertumbuhan yang rendah iaitu 300 oC dan saiz nanowayar menjadi
berkurangan apabila suhu pertumbuhan meningkat kepada 500 oC. Hasil
XRD mengesahkan bahawa ZnO mula teroksida pada suhu pertumbuhan 300 oC
dengan puncak paling ketara yang diperoleh diindeks ke ZnO(101). Walau
bagaimanapun, pengoksidaan Zn tidak siap sepenuhnya kerana masih terdapat
puncak Zn muncul pada suhu ini. Pada suhu pertumbuhan 500 oC, semua
puncak diindeks kepada ZnO dengan puncak
paling ketara ialah ZnO(101) yang bermaksud
pengoksidaan telah berlaku sepenuhnya. Saiz kristal yang dikira berbeza bermula
dari 27.841 nm hingga 36.788 nm untuk ZnO pada 300 °C dan 0.6966 nm hingga
161.18 nm untuk ZnO 500 °C.
Kata kunci: zink oksida, silikon, pengewapan haba, pengoksidaan haba
References
1.
Aida,
M. S., Tomasella, E., Cellier, J., Jacquet, M., Bouhssira, N., Abed, S. and
Mosbah, A. (2006). Annealing and oxidation mechanism of evaporated zinc thin
films from zinc oxide powder. Thin Solid
Films, 515 1494-99.
2.
Rusu,
G. G., Girtan, M. and Rusu, S. (2007). Preparation and characterization of ZnO
thin films prepared by thermal oxidation of evaporated Zn thin films. Superlattices and Microstructures, 42:
116-22.
3.
Yuan,
L., Wang, C., Cai, R., Wang, Y. and Zhou, G. (2014). Temperature-dependent
growth mechanism and microstructure of ZnO nanostructures grown from the
thermal oxidation of zinc. Journal of
Crystal Growth, 390:101-108.
4.
Girtan,
M., Rusu, G.G., Dabos-Seignon, S. and Rusu, M. (2008). Structural and
electrical properties of zinc oxides thin films prepared by thermal oxidation. Applied Surface Science, 254: 4179-4185.
5.
Rusu,
G. G., Rusu, M. and Apetroaei, N. (2007). On the structural changes during
thermal oxidation of evaporated Zn thin films. Thin Solid Films, 515: 8699-8704.
6.
Yuvaraj,
D. and Rao, K. N. (2009). Selective growth of ZnO nanoneedles by thermal
oxidation of Zn microstructures. Materials
Science and Engineering B, 164:195-99.
7.
Liu,
Y., Pan, C., Dai, Y. and Chen, W. (2008). Synthesis of one-dimensional ZnO
nanoneedles using thermal oxidation process in the air and its application as
filed emitters. Materials Letters, 62:
2783-2786.
8.
Li,
Z. W., Gao, W. and Reeves, R. J. (2005). Zinc oxide films by thermal oxidation
of zinc thin films. Surface &
Coatings Technology, 198: 319-323.
9.
Dhananjay.,
Nagaraju, J. and Krupanidhi, S. B. (2007). Investigations on zinc oxide thin
films grown on Si(100) by thermal oxidation. Materials Science and Engineering B, 137: 126-130.
10.
Rusu,
D. I., Rusu, G. G. and Luca, D. (2011). Structural characteristics and optical
properties of thermally oxidized zinc films. Acta Physica Polonica A, 119: 850-856.
11.
Pietruska,
R., Witkowski, B.S., Gieraltowska, S., Caban, P., Wachnicki, L., Zielony, E.,
Gwozdz, K., Bieganski, P., Placzek-Popko, E. and Godlewski, M. (2015). New
efficient solar cell structures based on zinc oxide nanorods. Solar Energy Materials & Solar Cells, 143:
99-104.
12.
Yu,
W. and Pan, C. (2009). Low temperature thermal oxidation synthesis of ZnO
nanoneedles and the growth mechanism. Materials
Chemistry and Physics, 115: 74-79.