Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 1090 - 1101
DOI:
10.17576/mjas-2018-2206-20
EXTRACTION
OF SUCCINIC ACID FROM REAL FERMENTATION BROTH BY USING EMULSION LIQUID MEMBRANE
PROCESS
(Pengekstrakan Asid Suksinik daripada Larutan Penapaian
Sebenar dengan Menggunakan Proses Membran Cecair Emulsi)
Norasikin Othman1,2*, Norela Jusoh1, Mariah Syafiqah
Mohar1, Muhammad Bukhari Rosly1, Norul Fatiha Mohamed Noah1
1Department of Chemical Engineering, Faculty of Chemical
and Energy Engineering
2Centre of Lipids Engineering and Applied Research, Ibnu
Sina Institute for Scientific and Industrial Research
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding
author: norasikin@cheme.utm.my
Received: 2
April 2018; Accepted: 31 July 2018
Abstract
Succinic acid is listed as one of the
twelve building block chemicals based on the ease of production through a
biotechnological approach and potential to derive various chemicals. The
application of bio-based succinic acid is still limited due to high downstream processing
costs. One of the potential methods to recover succinic acid is emulsion liquid
membrane (ELM). The ELM system consists of three main liquid phases; external
feed, membrane, and internal. In this study, the membrane phase was prepared by
dissolving Amberlite LA2 as a carrier, sorbitan monooleate (Span 80) and
polyoxyethylenesorbitan monooleate (Tween 80) as surfactants in commercial
grade palm oil, while the internal phase comprised of sodium carbonate
solution, Na2CO3. The influence of emulsifying time,
agitation speed, and agitation time on the water-in-oil-in-water (W/O/W)
emulsion stability were studied. The most stable condition was implemented on
various external phase concentrations to study the extraction and recovery
performances. The results showed that the most stable emulsion was obtained at
5 minutes of emulsifying time, 300 rpm of agitation speed and 3 minutes of
agitation time. The emulsion produced was able to provide a balanced result
between stability and ELM performance as it was able to extract almost 100% of
succinic acid with 98% recovery. The finding of this study showed ELM process
as the potential technology to extract succinic acid produced from
fermentation.
Keywords: succinic acid, fermentation broth, emulsion
liquid membrane, stability, extraction
Abstrak
Asid
suksinik telah disenaraikan sebagai salah satu daripada dua belas bahan kimia
asas berdasarkan kepada kemudahan pengeluaran melalui pendekatan bioteknologi
dan berpotensi untuk menerbitkan pelbagai bahan kimia. Penggunaan asid
bio-suksinik masih terhad disebabkan oleh kos pemprosesan hiliran yang tinggi.
Salah satu daripada kaedah yang berpotensi untuk memperoleh asid suksinik ialah
proses membran cecair emulsi (ELM). Sistem ELM terdiri daripada tiga fasa
cecair utama; suapan luaran, membran, dan dalaman. Dalam kajian ini, fasa
membran telah disediakan dengan melarutkan pembawa Amberlite LA2, surfaktan
Span 80 dan Tween 80 di dalam minyak kelapa sawit komersial, manakala fasa
dalaman terdiri daripada larutan natrium karbonat, Na2CO3.
Kesan masa pengemulsian, kelajuan pengadukan, dan masa pengadukan ke atas
kestabilan air-dalam-minyak-dalam air (W/O/W) telah dikaji. Keadaan emulsi yang
paling stabil telah digunakan pada pelbagai kepekatan fasa luaran untuk
mengkaji prestasi pengekstrakan dan perolehan. Keputusan menunjukkan keadaan
emulsi yang paling stabil didapati pada 5 minit masa pengemulsian, pada 300 rpm
kelajuan pengadukan, dan 3 minit masa pengadukan. Emulsi yang dihasilkan dapat
memberikan hasil yang seimbang di antara kestabilan dan prestasi ELM kerana ia
dapat mengekstrak hampir 100% asid suksinik dengan perolehan sebanyak 98%.
Hasil daripada kajian ini menunjukkan bahawa proses ELM adalah teknologi yang
berpotensi untuk mengekstrak asid suksinik yang dihasilkan daripada proses
penapaian.
Kata kunci: asid suksinik, larutan penapaian, membran cecair emulsi,
kestabilan, pengekstrakan
References
2.
Isar,
J., Agarwal, L., Saran, S. and Saxena, R. K. (2006). Succinic acid production
from Bacteroides fragilis: Process
optimization and scale up in a bioreactor. Anaerobe, 12(5): 231-237.
3.
Wang,
C., Li, Q., Tang, H., Zhou, W., Yan, D., Xing, J. and Wan, Y. (2013).
Clarification of succinic acid fermentation broth by ultrafiltration in
succinic acid bio–refinery. Journal of Chemical Technology &
Biotechnology, 88(3): 444-448.
4.
Jiang,
M., Ma, J., Wu, M., Liu, R., Liang, L., Xin, F., Zhang, W., Jia, H. and Dong,
W. (2017). Progress of succinic acid production from renewable resources: Metabolic
and fermentative strategies. Bioresource Technology, 245: 1710-1717.
5.
Huh,
Y. S., Jun, Y. S., Hong, Y. K., Song, H., Lee, S. Y. and Hong, W. H. (2006).
Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process
Biochemistry, 41(6): 1461-1465.
6.
Andersson,
C., Helmerius, J., Hodge, D., Berglund, K. A. and Rova, U. (2009). Inhibition
of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and
osmolarity. Biotechnology Progress, 25(1): 116-123.
7.
Li,
Q., Wang, D., Wu, Y., Li, W., Zhang, Y., Xing, J. and Su, Z. (2010). One step
recovery of succinic acid from fermentation broths by crystallization. Separation
and Purification Technology, 72(3): 294- 300.
8.
Hatti-Kaul,
R. (2010). Downstream processing in industrial biotechnology. In W. Soetaert
and E. J. Vandamme (Eds.), Industrial
Biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA: pp. 279 – 321.
9.
Jusoh,
N. and Othman, N. (2016). Stability of water-in-oil emulsion in liquid membrane
prospect. Malaysian Journal of Fundamental and Applied Sciences, 12(3):
114-116.
10.
Othman,
N., Noah, N. F. M., Shu, L. Y., Ooi, Z. Y., Jusoh, N., Idroas, M. and Goto, M.
(2017). Easy removing of phenol from wastewater using vegetable oil-based
organic solvent in emulsion liquid membrane process. Chinese Journal of
Chemical Engineering, 25(1): 45-52.
11.
Othman,
N., Mili, N., Idris, A. and Zailani, S. N. (2012). Removal of dyes from liquid
waste solution: Study on liquid membrane component selection and stability. In
A. F. Ismail and T. Matsuura Eds.), Sustainable
Membrane Technology for Energy, Water, and Environment. John Wiley &
Sons, Inc., Canada: pp. 221-229.
12.
Chaouchi,
S. and Hamdaoui, O. (2014). Acetaminophen extraction by emulsion liquid
membrane using Aliquat 336 as extractant. Separation and Purification
Technology, 129: 32-40.
13.
Ooi,
Z. Y., Harruddin, N. and Othman, N. (2015). Recovery of kraft lignin from
pulping wastewater via emulsion liquid membrane process. Biotechnology
Progress, 31(5): 1305-1314.
14.
Noah,
N. F. M., Othman, N. and Jusoh, N. (2016). Highly selective transport of
palladium from electroplating wastewater using emulsion liquid membrane
process. Journal of the Taiwan Institute of Chemical Engineers, 64: 134-141.
15.
Jusoh,
N., Othman, N. and Nasruddin, N. A. (2016). Emulsion liquid membrane technology
in organic acid purification. Malaysian Journal of Analytical Sciences, 20(2):
436-443.
16.
Sulaiman,
R. N. R., Othman, N. and Amin, N. A. S. (2014). Emulsion liquid membrane
stability in the extraction of ionized nanosilver from wash water. Journal
of Industrial and Engineering Chemistry, 20 (5): 3243-3250.
17.
Jusoh,
N., Othman, N. and Nasruddin, N. (2015). Liquid membrane formulation for
succinic acid extraction from simulated aqueous waste solution. In M. A. Hashim
(Ed.), ICGSCE 2014. Springer
Singapore: pp. 51-59.
18.
Lee,
S. C. and Hyun, K. S. (2010). Development of an emulsion liquid membrane system
for separation of acetic acid from succinic acid. Journal of Membrane
Science, 350(1–2): 333-339.
19.
Jusoh,
N., Othman, N., Idris, A. and Nasruddin, A. (2014). Characterization of liquid
pineapple waste as carbon source for production of succinic acid. Jurnal
Teknologi (Sciences and Engineering), 69(4): 11- 13.
20.
Peng,
W., Jiao, H., Shi, H. and Xu, C. (2012). The application of emulsion liquid
membrane process and heat-induced demulsification for removal of pyridine from
aqueous solutions. Desalination, 286: 372-378.
21.
Noah,
N. F. M. (2015). Emulsion liquid
membrane extraction of palladium from simulated electroplating wastewater.
Thesis of Master Degree, Universiti Teknologi Malaysia.
22.
Nghiem,
N., Kleff, S. and Schwegmann, S. (2017). Succinic Acid: Technology development
and commercialization. Fermentation, 3(2): 1-14.
23.
Gaikwad,
S. G. and Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic
and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics
Sonochemistry, 15 (4): 554-563.
24.
Sabry,
R., Hafez, A., Khedr, M. and El-Hassanin, A. (2007). Removal of lead by an
emulsion liquid membrane: Part I. Desalination, 212 (1–3): 165-175.
25.
Djenouhat,
M., Hamdaoui, O., Chiha, M. and Samar, M. H. (2008). Ultrasonication-assisted
preparation of water-in-oil emulsions and application to the removal of
cationic dyes from water by emulsion liquid membrane: Part 2. Permeation and
Stripping. Separation and Purification Technology, 63 (1): 231 – 238.
26.
Othman,
N., Noah, N. F. M., Poh, K. W. and Yi, O. Z. (2016). High performance of
chromium recovery from aqueous waste solution using mixture of palm-oil in
emulsion liquid membrane. Procedia Engineering, 148: 765-773.
27.
Kulkarni,
P. S. and Mahajani, V. V. (2002). Application of liquid emulsion membrane (LEM)
process for enrichment of molybdenum from aqueous solutions. Journal of
Membrane Science, 201(1–2): 123-135.
28.
León,
G. and Guzmán, M. A. (2005). Kinetic study of the effect of carrier and
stripping agent concentrations on the facilitated transport of cobalt through
bulk liquid membranes. Desalination, 184 (1): 79-87.
29.
Jusoh,
N. (2017). Palm oil based emulsion
liquid membrane formulation for succinic acid extraction performance.
PhD Thesis, Universiti Teknologi Malaysia.
30.
Lee,
S. C. (2011). Extraction of succinic acid from simulated media by emulsion
liquid membranes. Journal of Membrane Science, 381(1–2): 237-243.
31.
Noah,
N. F. M., Othman, N. and Jusoh, N. (2016). Highly selective transport of
palladium from electroplating wastewater using emulsion liquid membrane
process. Journal of the Taiwan Institute of Chemical Engineers, 64: 134-141.
32.
Chakraborty,
M., Bhattacharya, C. and Datta, S. (2010). Emulsion liquid membranes:
Definitions and classification, theories, module design, applications, new
directions and perspectives. In V. S. Kislik (Ed.), Liquid Membranes. Elsevier, Amsterdam: pp. 141-199.
33.
Chakraborty,
M., Bhattacharya, C. and Datta, S. (2002). Studies on transport mechanism of
nickel(II) from an acidic solution using emulsion liquid membranes. Journal
of Energy Heat and Mass Transfer, 24: 75-88.
34.
Ammar,
S. H., Attia, H. G. and Affat, A. K. D. (2012). Extraction of metal ions mixture cadmium, iron, zinc and copper from
aqueous solutions using emulsion liquid membrane technique. 2012 First National Conference for
Engineering Sciences: pp. 1-10.