Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1090 - 1101

DOI: 10.17576/mjas-2018-2206-20

 

 

 

EXTRACTION OF SUCCINIC ACID FROM REAL FERMENTATION BROTH BY USING EMULSION LIQUID MEMBRANE PROCESS

 

(Pengekstrakan Asid Suksinik daripada Larutan Penapaian Sebenar dengan Menggunakan Proses Membran Cecair Emulsi)

 

Norasikin Othman1,2*, Norela Jusoh1, Mariah Syafiqah Mohar1, Muhammad Bukhari Rosly1, Norul Fatiha Mohamed Noah1

 

1Department of Chemical Engineering, Faculty of Chemical and Energy Engineering

2Centre of Lipids Engineering and Applied Research, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  norasikin@cheme.utm.my

 

 

Received: 2 April 2018; Accepted: 31 July 2018

 

 

Abstract

Succinic acid is listed as one of the twelve building block chemicals based on the ease of production through a biotechnological approach and potential to derive various chemicals. The application of bio-based succinic acid is still limited due to high downstream processing costs. One of the potential methods to recover succinic acid is emulsion liquid membrane (ELM). The ELM system consists of three main liquid phases; external feed, membrane, and internal. In this study, the membrane phase was prepared by dissolving Amberlite LA2 as a carrier, sorbitan monooleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) as surfactants in commercial grade palm oil, while the internal phase comprised of sodium carbonate solution, Na2CO3. The influence of emulsifying time, agitation speed, and agitation time on the water-in-oil-in-water (W/O/W) emulsion stability were studied. The most stable condition was implemented on various external phase concentrations to study the extraction and recovery performances. The results showed that the most stable emulsion was obtained at 5 minutes of emulsifying time, 300 rpm of agitation speed and 3 minutes of agitation time. The emulsion produced was able to provide a balanced result between stability and ELM performance as it was able to extract almost 100% of succinic acid with 98% recovery. The finding of this study showed ELM process as the potential technology to extract succinic acid produced from fermentation.

 

Keywords:  succinic acid, fermentation broth, emulsion liquid membrane, stability, extraction

 

Abstrak

Asid suksinik telah disenaraikan sebagai salah satu daripada dua belas bahan kimia asas berdasarkan kepada kemudahan pengeluaran melalui pendekatan bioteknologi dan berpotensi untuk menerbitkan pelbagai bahan kimia. Penggunaan asid bio-suksinik masih terhad disebabkan oleh kos pemprosesan hiliran yang tinggi. Salah satu daripada kaedah yang berpotensi untuk memperoleh asid suksinik ialah proses membran cecair emulsi (ELM). Sistem ELM terdiri daripada tiga fasa cecair utama; suapan luaran, membran, dan dalaman. Dalam kajian ini, fasa membran telah disediakan dengan melarutkan pembawa Amberlite LA2, surfaktan Span 80 dan Tween 80 di dalam minyak kelapa sawit komersial, manakala fasa dalaman terdiri daripada larutan natrium karbonat, Na2CO3. Kesan masa pengemulsian, kelajuan pengadukan, dan masa pengadukan ke atas kestabilan air-dalam-minyak-dalam air (W/O/W) telah dikaji. Keadaan emulsi yang paling stabil telah digunakan pada pelbagai kepekatan fasa luaran untuk mengkaji prestasi pengekstrakan dan perolehan. Keputusan menunjukkan keadaan emulsi yang paling stabil didapati pada 5 minit masa pengemulsian, pada 300 rpm kelajuan pengadukan, dan 3 minit masa pengadukan. Emulsi yang dihasilkan dapat memberikan hasil yang seimbang di antara kestabilan dan prestasi ELM kerana ia dapat mengekstrak hampir 100% asid suksinik dengan perolehan sebanyak 98%. Hasil daripada kajian ini menunjukkan bahawa proses ELM adalah teknologi yang berpotensi untuk mengekstrak asid suksinik yang dihasilkan daripada proses penapaian.

 

Kata kunci:  asid suksinik, larutan penapaian, membran cecair emulsi, kestabilan, pengekstrakan

 

References

1.       Werpy, T., Holladay, J. and White, J. (2004). Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. DOE Scientific and Technical Information.

2.       Isar, J., Agarwal, L., Saran, S. and Saxena, R. K. (2006). Succinic acid production from Bacteroides fragilis: Process optimization and scale up in a bioreactor. Anaerobe, 12(5): 231-237.

3.       Wang, C., Li, Q., Tang, H., Zhou, W., Yan, D., Xing, J. and Wan, Y. (2013). Clarification of succinic acid fermentation broth by ultrafiltration in succinic acid bio–refinery. Journal of Chemical Technology & Biotechnology, 88(3): 444-448.

4.       Jiang, M., Ma, J., Wu, M., Liu, R., Liang, L., Xin, F., Zhang, W., Jia, H. and Dong, W. (2017). Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresource Technology, 245: 1710-1717.

5.       Huh, Y. S., Jun, Y. S., Hong, Y. K., Song, H., Lee, S. Y. and Hong, W. H. (2006). Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochemistry, 41(6): 1461-1465.

6.       Andersson, C., Helmerius, J., Hodge, D., Berglund, K. A. and Rova, U. (2009). Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity. Biotechnology Progress, 25(1): 116-123.

7.       Li, Q., Wang, D., Wu, Y., Li, W., Zhang, Y., Xing, J. and Su, Z. (2010). One step recovery of succinic acid from fermentation broths by crystallization. Separation and Purification Technology, 72(3): 294- 300.

8.       Hatti-Kaul, R. (2010). Downstream processing in industrial biotechnology. In W. Soetaert and E. J. Vandamme (Eds.), Industrial Biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA: pp. 279 – 321.

9.       Jusoh, N. and Othman, N. (2016). Stability of water-in-oil emulsion in liquid membrane prospect. Malaysian Journal of Fundamental and Applied Sciences, 12(3): 114-116.

10.    Othman, N., Noah, N. F. M., Shu, L. Y., Ooi, Z. Y., Jusoh, N., Idroas, M. and Goto, M. (2017). Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chinese Journal of Chemical Engineering, 25(1): 45-52.

11.    Othman, N., Mili, N., Idris, A. and Zailani, S. N. (2012). Removal of dyes from liquid waste solution: Study on liquid membrane component selection and stability. In A. F. Ismail and T. Matsuura Eds.), Sustainable Membrane Technology for Energy, Water, and Environment. John Wiley & Sons, Inc., Canada: pp. 221-229.

12.    Chaouchi, S. and Hamdaoui, O. (2014). Acetaminophen extraction by emulsion liquid membrane using Aliquat 336 as extractant. Separation and Purification Technology, 129: 32-40.

13.    Ooi, Z. Y., Harruddin, N. and Othman, N. (2015). Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process. Biotechnology Progress, 31(5): 1305-1314.

14.    Noah, N. F. M., Othman, N. and Jusoh, N. (2016). Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. Journal of the Taiwan Institute of Chemical Engineers, 64: 134-141.

15.    Jusoh, N., Othman, N. and Nasruddin, N. A. (2016). Emulsion liquid membrane technology in organic acid purification. Malaysian Journal of Analytical Sciences, 20(2): 436-443.

16.    Sulaiman, R. N. R., Othman, N. and Amin, N. A. S. (2014). Emulsion liquid membrane stability in the extraction of ionized nanosilver from wash water. Journal of Industrial and Engineering Chemistry, 20 (5): 3243-3250.

17.    Jusoh, N., Othman, N. and Nasruddin, N. (2015). Liquid membrane formulation for succinic acid extraction from simulated aqueous waste solution. In M. A. Hashim (Ed.), ICGSCE 2014. Springer Singapore: pp. 51-59.

18.    Lee, S. C. and Hyun, K. S. (2010). Development of an emulsion liquid membrane system for separation of acetic acid from succinic acid. Journal of Membrane Science, 350(1–2): 333-339.

19.    Jusoh, N., Othman, N., Idris, A. and Nasruddin, A. (2014). Characterization of liquid pineapple waste as carbon source for production of succinic acid. Jurnal Teknologi (Sciences and Engineering), 69(4): 11- 13.

20.    Peng, W., Jiao, H., Shi, H. and Xu, C. (2012). The application of emulsion liquid membrane process and heat-induced demulsification for removal of pyridine from aqueous solutions. Desalination, 286: 372-378.

21.    Noah, N. F. M. (2015). Emulsion liquid membrane extraction of palladium from simulated electroplating wastewater. Thesis of Master Degree, Universiti Teknologi Malaysia.

22.    Nghiem, N., Kleff, S. and Schwegmann, S. (2017). Succinic Acid: Technology development and commercialization. Fermentation, 3(2): 1-14.

23.    Gaikwad, S. G. and Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry, 15 (4): 554-563.

24.    Sabry, R., Hafez, A., Khedr, M. and El-Hassanin, A. (2007). Removal of lead by an emulsion liquid membrane: Part I. Desalination, 212 (1–3): 165-175.

25.    Djenouhat, M., Hamdaoui, O., Chiha, M. and Samar, M. H. (2008). Ultrasonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: Part 2. Permeation and Stripping. Separation and Purification Technology, 63 (1): 231 – 238.

26.    Othman, N., Noah, N. F. M., Poh, K. W. and Yi, O. Z. (2016). High performance of chromium recovery from aqueous waste solution using mixture of palm-oil in emulsion liquid membrane. Procedia Engineering, 148: 765-773.

27.    Kulkarni, P. S. and Mahajani, V. V. (2002). Application of liquid emulsion membrane (LEM) process for enrichment of molybdenum from aqueous solutions. Journal of Membrane Science, 201(1–2): 123-135.

28.    León, G. and Guzmán, M. A. (2005). Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes. Desalination, 184 (1): 79-87.

29.    Jusoh, N. (2017). Palm oil based emulsion liquid membrane formulation for succinic acid extraction performance. PhD Thesis, Universiti Teknologi Malaysia.

30.    Lee, S. C. (2011). Extraction of succinic acid from simulated media by emulsion liquid membranes. Journal of Membrane Science, 381(1–2): 237-243.

31.    Noah, N. F. M., Othman, N. and Jusoh, N. (2016). Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. Journal of the Taiwan Institute of Chemical Engineers, 64: 134-141.

32.    Chakraborty, M., Bhattacharya, C. and Datta, S. (2010). Emulsion liquid membranes: Definitions and classification, theories, module design, applications, new directions and perspectives. In V. S. Kislik (Ed.), Liquid Membranes. Elsevier, Amsterdam: pp. 141-199.

33.    Chakraborty, M., Bhattacharya, C. and Datta, S. (2002). Studies on transport mechanism of nickel(II) from an acidic solution using emulsion liquid membranes. Journal of Energy Heat and Mass Transfer, 24: 75-88.

34.    Ammar, S. H., Attia, H. G. and Affat, A. K. D. (2012). Extraction of metal ions mixture cadmium, iron, zinc and copper from aqueous solutions using emulsion liquid membrane technique. 2012 First National Conference for Engineering Sciences: pp. 1-10.

 




Previous                    Content                    Next