Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 965 - 972

DOI: 10.17576/mjas-2018-2206-06

 

 

 

Modified Leaching of 238U and 232Th from Water Leach Purification (WLP) Residue

 

(Modifikasi Larut Lesap Bagi 238U dan 232Th dari Residu Pemurnian Larut Lesap Air (WLP))

 

Nur Shahidah Abdul Rashid1, Zetty Izzaty Saleh2, Nurul Syiffa Mahzan2, Siti Nur Ain Sulaiman2, Khoo Kok Siong2, Mohd. Idzat Idris2, Syazwani Mohd Fadzil2*

 

1Division of Advanced Nuclear Engineering,

Pohang University of Science and Technology, 790784 Pohang, Gyeongsangbuk, South Korea

2School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  syazwanimf@ukm.edu.my

 

 

Received: 29 August 2017; Accepted: 29 October 2018

 

 

Abstract

In recent years, the importance of actinide element mobile fractions in risk assessment evaluation of contaminated sites has increased. The knowledge of the sorption kinetics of 238U and 232Th and the thermodynamics behind the sorption process on radioactive waste is important to understand their mobility. In this study, the leaching process of 238U and 232Th from water leach purification (WLP) residue of Lynas Advanced Materials Plant was investigated to obtain the optimum leaching conditions by combining synthetic precipitation leaching procedure and batch method for the simulation of acid rain and heavy flooding, correspondingly. The initial 238U and 232Th concentrations, and the concentration at varies pH and contact time of 238U and 232Th from the WLP residue were studied. Results show that the initial concentrations of 238U and 232Th in the WLP residue are 6.6 and 206.1 mg/kg, respectively. In general, the highest values of the concentration after the leaching process of 238U and 232Th are 0.363 and 8.288 mg/kg, correspondingly. These results show the maximum potential remobilisation of 238U and 232Th at pH 4 with the same contact time of 14 days. At a similar duration, the maximum percentages of leaching are 5.50% and 3.99% for 238U and 232Th, respectively. Moreover, at pH 7, the minimum leaching percentages of 238U and 232Th are 4.7% and 3.61%, correspondingly. Thus, remobilising 238U and 232Th shows that the rate of leaching is influenced by the pH of leachant used. The maximum concentrations of 238U and 232Th are obtained at low pH such as pH 4. At pH 7 and 8, the leached amounts of 238U and 232Th are minimum. Therefore, combining the SPLP and batch method is practical for estimating the leaching and remobilisation of 232Th and 238U from WLP residues. The combined method may be useful for monitoring and risk assessment in environmental studies.

 

Keywords:  leaching, WLP residue, uranium, thorium

 

Abstrak

Dalam tahun-tahun kebelakangan ini, kepentingan pergerakan unsur aktinida menjadi perhatian semasa penilaian risiko tapak-tapak yang tercemar. Pengetahuan tentang penyerapan kinetik dan termodinamik di sebalik proses penyerapan sisa radioaktif adalah penting untuk memahami pergerakan 238U dan 232Th. Dalam kajian ini, proses kelarut lesapan 238U dan 232Th dari residu pemurniaan larut lesap air (WLP) dari Lynas Advanced Materials Plant telah dikaji untuk mendapatkan keadaan kelarut lesapan yang optimum menggunakan gabungan prosedur larut lesap pemendapan sintetik dan kaedah kelompok, masing-masing sebagai simulasi semasa keadaan hujan asid dan banjir. Kepekatan awal 238U dan 232Th, dan kepekatan 238U dan 232Th terhadap pH dan masa berbeza dari residu WLP turut dilihat. Keputusan menunjukkan kepekatan awal 238U dan 232Th dalam residu WLP masing-masing adalah 6.6 mg/kg dan 206.1 mg/kg. Secara amnya, nilai tertinggi kepekatan selepas proses larut lesap bagi 238U dan 232Th masing-masing adalah 0.363 mg/kg dan 8.288 mg/kg. Kedua-dua hasil menunjukkan bahawa potensi pergerakan maksimum adalah pada pH 4 bagi 238U dan 232Th dalam masa 14 hari. Dalam tempoh masa yang sama, peratusan kelarut lesapan maksimum dicatatkan sebanyak 5.50% dan 3.99% masing-masing bagi 238U dan 232Th. Selain itu, pada pH 7, peratusan larut lesap minimum bagi 238U dan 232Th masing-masing adalah 4.7% dan 3.61%. Oleh itu, pergerakan 238U dan 232Th menunjukkan ia dipengaruhi oleh pH pelarut yang digunakan. Kepekatan maksimum 238U dan 232Th diperoleh pada pH yang lebih rendah seperti pH 4. Pada nilai pH 7 dan 8 mencatatkan kepekatan larut lesap 238U dan 232Th yang minimum. Kesimpulannya, gabungan kaedah SPLP dan kaedah kelompok adalah praktikal untuk menganggar larut lesap dan pergerakan 238U dan 232Th dari residu WLP. Gabungan kaedah ini boleh digunakan sebagai tujuan pemantauan dan penilaian risiko terhadap kajian alam sekitar.

 

Kata kunci:  larut lesap, residu WLP, uranium, torium

 

References

 1.       Alonso, E., Sherman, A. M., Wallington, T. J., Everson, M. P., Field, F. R., Roth, R. and Kirchain, R. E. (2012). Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environmental Science & Technology, 46(6): 3406-3414.

 2.       Navarro, J. and Zhao, F. (2014). Life-cycle assessment of the production of rare-earth elements for energy applications: A review. Frontiers in Energy Research, 2: 45.

 3.       IAEA (2011). Report of the international review mission on the radiation safety aspects of a proposed rare earths processing facility (the Lynas project). International Atomic Energy Agency (IAEA).

 4.       O'Brien, R. and Cooper, M. (1998). Technologically enhanced naturally occurring radioactive material (NORM): pathway analysis and radiological impact. Applied Radiation and Isotopes, 49(3): 227-239.

 5.       Zhang L. (2014). Towards sustainable rare earth mining: a study of occupational & community health issues. Thesis of Master Degree, University of British Columbia.

 6.       IAEA (2011). Radiation protection and NORM residue  management in the production of rare earths from thorium containing minerals. International Atomic Energy Agency (IAEA).

 7.       National Toxics Network (2012). Rare earth and radioactive waste a preliminary waste stream assessment of the Lynas Advanced Materials Plant, Gebeng, Malaysia. National Toxics Network (NTN).

 8.       Alghanmi, S. I., Al Sulami, A. F., El-Zayat, T. A., Alhogbi, B. G. and Salam, M. A. (2015). Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamics studies. International Soil and Water Conservation Research, 3(3): 196-208.

 9.       Fadzil, S. M., Sarmani, S., Ab. Majid, A., Khoo, K. S. And Hamzah, A. (2011). k0-INAA measurement of levels of toxic elements in oil sludge and their leachability. Journal of Radioanalytical and Nuclear Chemistry 287: 41-47.

10.     Mohd Fadzil, S. (2011). Penentuan kepekatan dan penilaian jangka masa panjang pelepasan unsur As, Co, Cr, dan Zn dari enap cemar minyak. Thesis of Master Degree, Universiti Kebangsaan Malaysia.

11.     Mohd Fadzil, S., Sarmani, S., Ab. Majid, A., Hamzah A. and Khoo, K.S. (2013). Modeling of cumulative release on long term leaching behaviour of selected oil sludge from crude oil terminal and petroleum refining plant. Journal of Radioanalytical and Nuclear Chemistry 297: 265-270.

12.     Mahzan, N. S. (2017). Menentukan tahap kelarutlesapan radionuklid 238U dari sampel residu pemurnian larut lesap air (WLP) terhadap medium akues. Thesis of Bachelor Degree, Universiti Kebangsaan Malaysia.

13.     Saleh, Z. I. (2017). Penentuan kelarutlesapan radionuklid 232Th dalam sampel pemurnian larut lesap air (WLP). Thesis of Bachelor Degree, Universiti Kebangsaan Malaysia.

14.     Government of Canada (2003). Site remediation technologies: A reference manual. Contaminated Sites Working Group, Government of Canada, Ontario, Canada.

15.     Fawzy, E. (2008). Soil remediation using in situ immobilisation techniques. Chemistry and Ecology, 24(2): 147-156.

16.     Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. and Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59(2): 315-323.

17.     Kord, B., Mataji, A. and Babaie, S. (2010). Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. International Journal of Environmental Science & Technology, 7(1): 79-84.

18.     Wuana, R., Okieimen, F. and Imborvungu, J. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7(3): 485-496.

19.     Moutsatsou, A., Gregou, M., Matsas, D. and Protonotarios, V. (2006). Washing as a remediation technology applicable in soils heavily polluted by mining–metallurgical activities. Chemosphere, 63(10): 1632-1640.

20.     USEPA (1994). Method 1312: Synthetic Precipitation Leaching Procedure, part of test methods for evaluating solid waste, physical/chemical methods. United States Environmental Protection Agency (USEPA).

21.     Townsend, T., Jang, Y.-C. and Tolaymat, T. (2003).  A guide to the use of leaching tests in solid waste management decision making. University of Florida, Florida.

22.     New Jersey Department of Environmental Protection (2013). Development of Site-Specific Impact to Ground Water Soil Remediation Standards Using the Synthethic Precipitation Leaching Procedure. New Jersey Department of Environmental Protection.

23.     Malaysia Nuclear Agency (2010). Radiological impact assessment of advanced materials plant Gebeng Industrial Estate, Kuantan, Pahang. Malaysia Nuclear Agency.

24.     Al-Areqi, W. M., Majid, A. A., Sarmani, S. (2014). Digestion study of water leach purification (WLP) residue for possibility of thorium extraction. Malaysian Journal of Analytical Sciences, 18(1): 221-225.

25.     IAEA. (2014). Report of international post-review on the radiation safety aspects of the operation of a rare earth processing facility and assessment of the implementation of the 2011 mission recommendations. International Atomic Energy Agency (IAEA).

26.     Quina, M. J., Bordado, J. C. and Quinta-Ferreira, R. M. (2009). The influence of pH on the leaching behaviour of  inorganic components from municipal solid waste APC residues. Waste Management, 29(9): 2483-2493.

27.     Van der Sloot, H. and Dijkstra, J. (2004). Development of horizontally standardized leaching tests for construction materials: A material based or release based approach? Identical leaching mechanisms for different materials, (ECN-C-04-060). https://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-C--04-060. [Accessed online 15 February 2017].

28.     Pendowski, J. (2003). An assessment of laboratory leaching tests for predicting the impacts of fill material on ground water and surface water quality-Report to the legislature. Washington State Department of Ecology. https://fortress.wa.gov/ecy/publications/documents/0309107.pdf. [Accessed online 8 March 2017].

29.     Guo, P., Duan, T., Song, X., Xu, J. and Chen, H. (2008). Effects of soil pH and organic matter on distribution of thorium fractions in soil contaminated by rare-earth industries. Talanta, 77(2): 624-27.

30.     Wright, R. and Schindler, D. (1995). Interaction of acid rain and global changes: effects on terrestrial and aquatic ecosystems. Water, Air, and Soil Pollution, 85(1): 89-99.

31.     Treptow, R. S. (1980). Le Châtelier's principle: A reexamination and method of graphic illustration. Journal of Chemical Education, 57(6): 417.

32.     Langmuir, D. and Herman, J. S. (1980). The mobility of thorium in natural waters at low temperatures. Geochimica et Cosmochimica Acta, 44(11): 1753-1766.

33.     Mernagh, T. P. and Miezitis, Y. (2008). A review of the geochemical processes controlling the distribution of thorium in the earth's crust and Australia's thorium resources. Geoscience Australia, Canberra: pp. 48.

 




Previous                    Content                    Next