Malaysian Journal of
Analytical Sciences Vol 22 No 6 (2018): 965 - 972
DOI:
10.17576/mjas-2018-2206-06
Modified Leaching of 238U and 232Th from Water Leach Purification (WLP) Residue
(Modifikasi Larut
Lesap Bagi 238U dan
232Th dari
Residu Pemurnian Larut Lesap Air (WLP))
1Division of Advanced Nuclear Engineering,
Pohang University of Science and Technology, 790784 Pohang, Gyeongsangbuk,
South Korea
2School of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author:
syazwanimf@ukm.edu.my
Received:
29 August 2017; Accepted: 29 October 2018
Abstract
In recent years, the importance of actinide
element mobile fractions in risk assessment evaluation of contaminated sites
has increased. The knowledge of the sorption kinetics of 238U and 232Th
and the thermodynamics behind the sorption process on radioactive waste is
important to understand their mobility. In this study, the leaching process of 238U
and 232Th from water leach purification (WLP) residue of Lynas
Advanced Materials Plant was investigated to obtain the optimum leaching
conditions by combining synthetic precipitation leaching procedure and batch
method for the simulation of acid rain and heavy flooding, correspondingly. The
initial 238U and 232Th concentrations, and the concentration
at varies pH and contact time of 238U and 232Th from the
WLP residue were studied. Results show that the initial concentrations of 238U and 232Th in the
WLP residue are 6.6 and 206.1 mg/kg, respectively. In general, the highest
values of the concentration after the leaching process of 238U and 232Th
are 0.363 and 8.288 mg/kg, correspondingly. These results show the
maximum potential remobilisation of 238U and 232Th at pH
4 with the same contact time of 14 days. At a similar duration, the maximum
percentages of leaching are 5.50% and 3.99% for 238U and 232Th,
respectively. Moreover, at pH 7, the minimum leaching percentages of 238U
and 232Th are 4.7% and 3.61%, correspondingly. Thus, remobilising 238U and 232Th
shows that the rate of leaching is influenced by the pH of leachant used. The
maximum concentrations of 238U and 232Th are obtained at
low pH such as pH 4. At pH 7 and 8, the leached amounts of 238U and 232Th
are minimum. Therefore, combining the SPLP and batch method is practical
for estimating the leaching and remobilisation of 232Th and 238U
from WLP residues. The combined method may be useful for monitoring and risk
assessment in environmental studies.
Keywords: leaching, WLP residue, uranium, thorium
Abstrak
Dalam tahun-tahun kebelakangan ini, kepentingan pergerakan unsur aktinida
menjadi perhatian semasa penilaian risiko tapak-tapak yang tercemar.
Pengetahuan tentang penyerapan kinetik dan termodinamik di sebalik proses
penyerapan sisa radioaktif adalah penting untuk memahami pergerakan 238U
dan 232Th. Dalam kajian ini, proses kelarut lesapan 238U
dan 232Th dari residu pemurniaan larut lesap air (WLP) dari Lynas
Advanced Materials Plant telah dikaji untuk mendapatkan keadaan kelarut lesapan
yang optimum menggunakan gabungan prosedur larut lesap pemendapan sintetik dan
kaedah kelompok, masing-masing sebagai simulasi semasa keadaan hujan asid dan
banjir. Kepekatan awal 238U dan 232Th, dan kepekatan 238U
dan 232Th terhadap pH dan masa berbeza dari residu WLP turut
dilihat. Keputusan menunjukkan kepekatan awal 238U dan 232Th
dalam residu WLP masing-masing adalah 6.6 mg/kg dan 206.1 mg/kg. Secara amnya,
nilai tertinggi kepekatan selepas proses larut lesap bagi 238U dan 232Th
masing-masing adalah 0.363 mg/kg dan 8.288 mg/kg. Kedua-dua hasil menunjukkan
bahawa potensi pergerakan maksimum adalah pada pH 4 bagi 238U dan 232Th
dalam masa 14 hari. Dalam tempoh masa yang sama, peratusan kelarut lesapan
maksimum dicatatkan sebanyak 5.50% dan 3.99% masing-masing bagi 238U
dan 232Th. Selain itu, pada pH 7, peratusan larut lesap minimum bagi
238U dan 232Th masing-masing adalah 4.7% dan 3.61%. Oleh
itu, pergerakan 238U dan 232Th menunjukkan ia dipengaruhi
oleh pH pelarut yang digunakan. Kepekatan maksimum 238U dan 232Th
diperoleh pada pH yang lebih rendah seperti pH 4. Pada nilai pH 7 dan 8
mencatatkan kepekatan larut lesap 238U dan 232Th yang
minimum. Kesimpulannya, gabungan kaedah SPLP dan kaedah kelompok adalah
praktikal untuk menganggar larut lesap dan pergerakan 238U dan 232Th
dari residu WLP. Gabungan kaedah ini boleh digunakan sebagai tujuan pemantauan
dan penilaian risiko terhadap kajian alam sekitar.
Kata kunci: larut lesap,
residu WLP, uranium, torium
References
1.
Alonso,
E., Sherman, A. M., Wallington, T. J., Everson, M. P., Field, F. R., Roth, R.
and Kirchain, R. E. (2012). Evaluating rare earth element availability: A case
with revolutionary demand from clean technologies. Environmental Science & Technology, 46(6): 3406-3414.
2.
Navarro,
J. and Zhao, F. (2014). Life-cycle assessment of the production of rare-earth
elements for energy applications: A review. Frontiers
in Energy Research, 2: 45.
3.
IAEA
(2011). Report of the international review mission on the radiation safety
aspects of a proposed rare earths processing facility (the Lynas project). International
Atomic Energy Agency (IAEA).
4.
O'Brien,
R. and Cooper, M. (1998). Technologically enhanced naturally occurring
radioactive material (NORM): pathway analysis and radiological impact. Applied Radiation and Isotopes, 49(3):
227-239.
5.
Zhang
L. (2014). Towards sustainable rare earth mining: a study of occupational &
community health issues. Thesis of Master Degree, University of British
Columbia.
6.
IAEA
(2011). Radiation protection and NORM residue
management in the production of rare earths from thorium containing
minerals. International Atomic Energy Agency (IAEA).
7.
National
Toxics Network (2012). Rare earth and radioactive waste a preliminary waste
stream assessment of the Lynas Advanced Materials Plant, Gebeng, Malaysia.
National Toxics Network (NTN).
8.
Alghanmi,
S. I., Al Sulami, A. F., El-Zayat, T. A., Alhogbi, B. G. and Salam, M. A.
(2015). Acid leaching of heavy metals from contaminated soil collected from
Jeddah, Saudi Arabia: kinetic and thermodynamics studies. International Soil and Water Conservation Research, 3(3): 196-208.
9.
Fadzil, S. M.,
Sarmani, S., Ab. Majid, A., Khoo, K. S. And Hamzah, A. (2011). k0-INAA
measurement of levels of toxic elements in oil sludge and their leachability. Journal of Radioanalytical and Nuclear
Chemistry 287:
41-47.
10.
Mohd
Fadzil, S. (2011). Penentuan kepekatan dan penilaian jangka masa panjang
pelepasan unsur As, Co, Cr, dan Zn dari enap cemar minyak. Thesis of Master
Degree, Universiti Kebangsaan Malaysia.
11.
Mohd Fadzil,
S., Sarmani, S., Ab. Majid, A., Hamzah A. and Khoo, K.S. (2013). Modeling of
cumulative release on long term leaching behaviour of selected oil sludge from
crude oil terminal and petroleum refining plant. Journal of Radioanalytical and Nuclear Chemistry 297: 265-270.
12.
Mahzan, N. S.
(2017). Menentukan tahap kelarutlesapan radionuklid 238U dari sampel
residu pemurnian larut lesap air (WLP) terhadap medium akues. Thesis
of Bachelor Degree, Universiti Kebangsaan Malaysia.
13.
Saleh,
Z. I. (2017). Penentuan kelarutlesapan radionuklid 232Th dalam
sampel pemurnian larut lesap air (WLP). Thesis of Bachelor Degree, Universiti
Kebangsaan Malaysia.
14.
Government
of Canada (2003). Site remediation technologies: A reference manual.
Contaminated Sites Working Group, Government of Canada, Ontario, Canada.
15.
Fawzy,
E. (2008). Soil remediation using in situ immobilisation techniques. Chemistry and Ecology, 24(2): 147-156.
16.
Nouri,
J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. and Yousefi, N.
(2009). Accumulation of heavy metals in soil and uptake by plant species with
phytoremediation potential. Environmental
Earth Sciences, 59(2): 315-323.
17.
Kord,
B., Mataji, A. and Babaie, S. (2010). Pine (Pinus
Eldarica Medw.) needles as indicator for heavy metals pollution. International Journal of Environmental
Science & Technology, 7(1): 79-84.
18.
Wuana, R., Okieimen,
F. and Imborvungu, J. (2010). Removal of heavy metals from a contaminated soil
using organic chelating acids. International
Journal of Environmental Science & Technology, 7(3): 485-496.
19.
Moutsatsou,
A., Gregou, M., Matsas, D. and Protonotarios, V. (2006). Washing as a
remediation technology applicable in soils heavily polluted by
mining–metallurgical activities. Chemosphere,
63(10): 1632-1640.
20.
USEPA
(1994). Method 1312: Synthetic Precipitation Leaching Procedure, part of test
methods for evaluating solid waste, physical/chemical methods. United States
Environmental Protection Agency (USEPA).
21.
Townsend,
T., Jang, Y.-C. and Tolaymat, T. (2003).
A guide to the use of leaching tests in solid waste management decision
making. University of Florida, Florida.
22.
New Jersey Department of Environmental
Protection (2013).
Development of Site-Specific Impact to Ground Water Soil Remediation Standards
Using the Synthethic Precipitation Leaching Procedure. New Jersey Department of Environmental Protection.
23.
Malaysia
Nuclear Agency (2010). Radiological impact assessment of advanced materials
plant Gebeng Industrial Estate, Kuantan, Pahang. Malaysia
Nuclear Agency.
24.
Al-Areqi,
W. M., Majid, A. A., Sarmani, S. (2014). Digestion study of water leach
purification (WLP) residue for possibility of thorium extraction. Malaysian Journal of Analytical Sciences,
18(1): 221-225.
25.
IAEA.
(2014). Report of international post-review on the radiation safety aspects of
the operation of a rare earth processing facility and assessment of the
implementation of the 2011 mission recommendations. International
Atomic Energy Agency (IAEA).
26.
Quina,
M. J., Bordado, J. C. and Quinta-Ferreira, R. M. (2009). The influence of pH on
the leaching behaviour of inorganic
components from municipal solid waste APC residues. Waste Management, 29(9): 2483-2493.
27.
Van
der Sloot, H. and Dijkstra, J. (2004). Development of horizontally standardized
leaching tests for construction materials: A material based or release based
approach? Identical leaching mechanisms for different materials,
(ECN-C-04-060). https://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-C--04-060.
[Accessed online 15 February 2017].
28.
Pendowski,
J. (2003). An assessment of laboratory leaching tests for predicting the
impacts of fill material on ground water and surface water quality-Report to
the legislature. Washington State Department of Ecology.
https://fortress.wa.gov/ecy/publications/documents/0309107.pdf. [Accessed online 8 March 2017].
29.
Guo,
P., Duan, T., Song, X., Xu, J. and Chen, H. (2008). Effects of soil pH and
organic matter on distribution of thorium fractions in soil contaminated by
rare-earth industries. Talanta,
77(2): 624-27.
30.
Wright,
R. and Schindler, D. (1995). Interaction of acid rain and global changes:
effects on terrestrial and aquatic ecosystems. Water, Air, and Soil Pollution, 85(1): 89-99.
31.
Treptow,
R. S. (1980). Le Châtelier's principle: A reexamination and method of graphic
illustration. Journal of Chemical
Education, 57(6): 417.
32.
Langmuir,
D. and Herman, J. S. (1980). The mobility of thorium in natural waters at low
temperatures. Geochimica et Cosmochimica
Acta, 44(11): 1753-1766.
33.
Mernagh,
T. P. and Miezitis, Y. (2008). A review of the geochemical processes
controlling the distribution of thorium in the earth's crust and Australia's
thorium resources. Geoscience Australia, Canberra: pp. 48.