Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 45 - 51

DOI: 10.17576/mjas-2019-2301-06

 

 

 

PRODUCTION OF ETHYL LEVULINATE VIA ESTERIFICATION REACTION OF LEVULINIC ACID IN THE PRESENCE OF ZrO2 BASED CATALYST

 

(Penghasilan Etil Levulinat Melalui Pengesteran Asid Levulinik dengan Kehadiran Mangkin Berasaskan ZrO2)

 

Dorairaaj Sivasubramaniam1, Nor Aishah Saidina Amin1*, Khairuddin Ahmad1, Nur Aainaa Syahirah Ramli2

 

1Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia

2Advanced Oleochemical Technology Division,

Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author:  noraishah@cheme.utm.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Ethyl levulinate is widely used as a fuel additive, flavor or fragrance and as a component of fuel blending. This study focused on the production of ethyl levulinate from levulinic acid via esterification reaction in the presence of HPW/ZrO2.The catalyst was prepared using the wet impregnation method, characterized by using FTIR, BET and NH3-TPD and screened based on 20%, 40% and 60% HPW/ZrO2. The 40% HPW/ZrO2 catalyst exhibited the highest catalytic performance during the parameter screening stage which included catalyst loading (0.25‒1.25g) and volume ratio of levulinic acid to ethanol (1:4 – 1:8). The highest ethyl levulinate yield of 99% corresponded to a catalyst loading of 0.5 g and volume ratio of levulinic acid to ethanol of 1:5 with reaction conditions at 150 °C for 3 hours. The esterification reaction of levulinic acid revealed that the catalytic performance was influenced by the acid sites and surface area of the catalyst. In addition, volume ratio was also a major factor in enhancing the ethyl levulinate yield.

 

Keywords:  levulinic acid, ethyl levulinate, wet impregnation, esterification, phosphotungstic acid

 

Abstrak

Etil levulinat digunakan secara meluas sebagai komponen penting dalam bahan kosmetik, bahan tambahan dalam bahan api dan campuran bahan api. Kajian ini memberi tumpuan dengan penghasilan etil levulinat daripada asid levulinik melalui tindak balas pengesteran dengan kehadiran pemangkin HPW/ZrO2. Pemangkin ini disediakan dengan menggunakan kaedah impregnasi basah dan dicirikan dengan menggunakan FTIR, BET dan NH3-TPD, pemangkin ini ditapis berdasarkan 20%, 40%,dan 60% HPW/ZrO2. Akhirnya, didapati 40% HPW/ZrO2 menunjukkan mangkinan tinggi yang sesuai digunakan untuk pemeriksaan parameter melibatkan berat pemangkin (0.25‒1.25g) dan nisbah isipadu LA kepada etanol (1:4 ‒ 1:8). Penghasilan terbaik ditunjukkan dengan muatan pemangkin (0.5 g) dan nisbah isipadu asid levulinik kepada etanol (1:5) yang diperolehi hasil 99% EL pada 150 °C selama 3 jam. Penggunaan HPW/ZrO2 sebagai pemangkin dalam tindak balas pengesteran LA mendedahkan bahawa reaktiviti pemangkin sangat dipengaruhi oleh bahagian asid dan luas permukaan pemangkin tersebut.   

 

Kata kunci:  asid levulinik, etil levulinate, impregnasi basah, pengesteran, asid fosfotungstik

 

References

1.       Pasquale, G., Vázquez, P., Romanelli, G. and Baronetti G. (2012). Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catalysis Communications, 18: 115-120.

2.       Ya’aini, N., Amin, N. A. S. and Endud, S. (2013). Characterization and performance of hybrid catalysts for levulinic acid production from glucose. Microporous and Mesoporous Materials, 171: 14-23.

3.       Ramli, N. A. S. and Amin, N. A. S. (2014). Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Processing Technology, 128: 490-498.

4.       Fernandes, D. R., Rocha, A. S., Mai, E. F., Claudio, J. A. and Mota, T. d. S. V. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425–426: 199-204.

5.       Serrano-Ruiz, J. C., Pineda, A., Balu, A. M., Luque, R., Campelo, J. M., Romero, A. A. and Ramos-Fernández J.M., 2012, Catalytic transformations of biomass-derived acids into advanced biofuels. Catalysis Today, 195 (1): 162-168.

6.       Maldonado, G. M. G., Assary, R. S.,  Dumesic, J. A., Curtiss, L. A. (2012). Acid-catalyzed conversion of furfuryl alcohol to ethyl levulinate in liquid ethanol. Energy & Environmental Science, 5(10): 8990-8997.

7.       Nandiwale, K. Y., Sonar, S. K., Niphadkar, P. S., Joshi, P. N., Deshpande, S. S., Patil, V. S. and Bokade, V.V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460–461: 90-98.

8.       Zhao, G., Hu, L., Sun, Y., Zeng, X. and Lin, L. (2014). Conversion of biomass-derived furfuryl alcohol into ethyl levulinate catalyzed by solid acid in ethanol. BioResources, 9(2): 2634-2644.

9.       Katryniok, B.,  Paul, S., Capron, M., Lancelot, C., Bellière-Baca, V., Rey, P. and Dumeignil F. (2010). A long-life catalyst for glycerol dehydration to acrolein. Green Chemistry, 12(11): 1922-1925.

10.    Lee, A., Chaibakhsh, N., Rahman, M. B. A. and Tejo, B. A. (2010). Optimized enzymatic synthesis of levulinate ester in solvent-free system. Industrial Crops and Products, 32(3): 246-251.

 




Previous                    Content                    Next