Malaysian Journal of Analytical
Sciences Vol 23 No 1 (2019): 40 - 44
DOI:
10.17576/mjas-2019-2301-05
PRODUCTION
OF TITANIUM DIOXIDE NANOFIBER (TNF): INFLUENCE OF ELECTROSPINNING PARAMETER ON CRYSTALLINE
SIZE
(Penghasilan
Nanogentian Titanium Dioksida (TNF): Pengaruh Parameter Elektroputaran Terhadap
Saiz Habluran)
Norulsamani
Abdullah1, Siti Kartom Kamarudin1,2*, Loh Kee Shyuan1
1Fuel Cell Institute
2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
*Corresponding author: ctie@ukm.edu.my
Received: 13 April 2017; Accepted: 17 April 2018
Abstract
This study aims to develop a small
size of TNF using an electrospinning process. TNF is applied in direct methanol
fuel cell (DMFC) as a catalyst, catalyst support and a filler in the membrane.
This study involves determining the parameters that affect the electrospinning
process, particularly in terms of the distance between the needle tip and
collector towards the size of TNF crystalline. The production of TNF involves
an electrospinning process, followed by a stabilization and calcination
process. Fourier Transformation Infrared (FTIR) analysis was carried out to analyse
the purity of the samples, while X-ray diffractometer (XRD) analysis was
carried out to determine the size of crystalline. The result demonstrates that
the longer the distance between the needle and collector, the smaller the size
of the TNF produced. A smaller sized crystalline offers a significant impact on
catalytic reaction and overall performance of DMFC.
Keywords: titanium
dioxide, nanofiber, electrospinning, direct methanol fuel cell
Abstrak
Objektif utama kajian ini ialah membangunkan TNF bersaiz kecil untuk proses
elektroputaran. Penggunaan TNF dalam sel bahan api metanol langsung (DMFC)
adalah sebagai mangkin, sokongan mangkin dan pengisi di dalam membran. Kajian
ini dijalankan untuk menentukan parameter yang dapat menjejaskan proses
elektroputaran, iaitu jarak antara hujung jarum dan pengumpul, terhadap saiz
habluran TNF. Penghasilan TNF melibatkan proses elektroputaran, diikuti dengan
penstabilan dan kalsinasi. Analisis infra merah transformasi Fourier (FTIR)
dijalankan untuk menganalisa ketulenan sampel, sementara analisis pembelauan
sinar-X (XRD) untuk menentukan saiz habluran. Keputusan ujikaji menunjukkan
semakin jauh jarak antara hujung jarum dan pengumpul, semakin kecil saiz TNF
yang diperolehi. Pengurangan saiz habluran memberikan kesan yang besar kepada
tindak balas pemangkinan dan prestasi keseluruhan DMFC.
Kata kunci: titanium
dioksida, nanogentian, elektroputaran, sel fuel metanol langsung
References
1.
Abdullah,
N. and Kamarudin, S. (2015). Titanium dioxide in fuel cell technology: An
overview. Journal of Power Sources, 278: 109 - 118.
2. Mallakpour, S.,
Zhiani, M., Barati, A. and Rostami, H. (2013). Improving the direct methanol
fuel cell performance withpoly(vinyl alcohol)/titanium dioxide nanocomposites
as a novel electrolyte additive. International
Journal of Hydrogen Energy, 38(28): 12418 - 12426.
3. Drew, C., Liu,
X., Ziegler, D., Wang, X., Bruno, F. F., Whitten, J. and Kumar, J. (2003).
Metal oxide-coated polymer nanofibers.
Nano Letters, 3(2): 143 - 147.
4. Li, D. and Xia,
Y. (2003). Fabrication of titania nanofibers by electrospinning. Nano
Letters, 3(4): 555 - 560.
5. Madhugiri, S.,
Sun, B., Smirniotis, P. G., Ferraris, J. P. and Balkus, K. J. (2004).
Electrospun mesoporous titanium dioxide fibers. Microporous and Mesoporous Materials, 69(1): 77 - 83.
6. Ding, B., Kim,
C. K., Kim, H. Y., Seo, M. K. and Park, S. J. (2004). Titanium dioxide nanofibers
prepared by using electrospinning method. Fibers
and Polymers, 5 (2): 105 - 109.
7. Watthanaarun,
J., Pavarajarn, V. and Supaphol, P. (2005). Titanium(IV) oxide nanofibers by
combined sol–gel and electrospinning techniques: preliminary report on effects
of preparation conditions and secondary metal dopant. Science and Technology of
Advanced Materials, 6(3): 240 - 245.
8. Suzuki, Y.,
Pavasupree, S., Yoshikawa, S. and Kawahata, R. (2005). Natural rutile-derived
titanate nanofibers prepared by direct hydrothermal processing. Journal of Materials Research, 20(04):
1063 - 1070.
9. Ito, Y.,
Takeuchi, T., Tsujiguchi, T., Abdelkareem, M. A. and Nakagawa, N. (2013).
Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on
TiO2/-embedded carbon nanofiber support. Journal of Power Sources, 242: 280 - 288.
10. Zhang, L.,
Aboagye, A., Kelkar, A., Lai, C., and Fong, H. (2014). A review: Carbon
nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 49(2): 463
- 480.
11. Chronakis, I. S.
(2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using
electrospinning process - a review. Journal
of Materials Processing Technology, 167(2): 283 - 293.