Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 40 - 44

DOI: 10.17576/mjas-2019-2301-05

 

 

 

PRODUCTION OF TITANIUM DIOXIDE NANOFIBER (TNF): INFLUENCE OF ELECTROSPINNING PARAMETER ON CRYSTALLINE SIZE

 

(Penghasilan Nanogentian Titanium Dioksida (TNF): Pengaruh Parameter Elektroputaran Terhadap Saiz Habluran)

 

Norulsamani Abdullah1, Siti Kartom Kamarudin1,2*, Loh Kee Shyuan1

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  ctie@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

This study aims to develop a small size of TNF using an electrospinning process. TNF is applied in direct methanol fuel cell (DMFC) as a catalyst, catalyst support and a filler in the membrane. This study involves determining the parameters that affect the electrospinning process, particularly in terms of the distance between the needle tip and collector towards the size of TNF crystalline. The production of TNF involves an electrospinning process, followed by a stabilization and calcination process. Fourier Transformation Infrared (FTIR) analysis was carried out to analyse the purity of the samples, while X-ray diffractometer (XRD) analysis was carried out to determine the size of crystalline. The result demonstrates that the longer the distance between the needle and collector, the smaller the size of the TNF produced. A smaller sized crystalline offers a significant impact on catalytic reaction and overall performance of DMFC.

 

Keywords:  titanium dioxide, nanofiber, electrospinning, direct methanol fuel cell

 

Abstrak

Objektif utama kajian ini ialah membangunkan TNF bersaiz kecil untuk proses elektroputaran. Penggunaan TNF dalam sel bahan api metanol langsung (DMFC) adalah sebagai mangkin, sokongan mangkin dan pengisi di dalam membran. Kajian ini dijalankan untuk menentukan parameter yang dapat menjejaskan proses elektroputaran, iaitu jarak antara hujung jarum dan pengumpul, terhadap saiz habluran TNF. Penghasilan TNF melibatkan proses elektroputaran, diikuti dengan penstabilan dan kalsinasi. Analisis infra merah transformasi Fourier (FTIR) dijalankan untuk menganalisa ketulenan sampel, sementara analisis pembelauan sinar-X (XRD) untuk menentukan saiz habluran. Keputusan ujikaji menunjukkan semakin jauh jarak antara hujung jarum dan pengumpul, semakin kecil saiz TNF yang diperolehi. Pengurangan saiz habluran memberikan kesan yang besar kepada tindak balas pemangkinan dan prestasi keseluruhan DMFC.

 

Kata kunci:  titanium dioksida, nanogentian, elektroputaran, sel fuel metanol langsung

 

References

1.       Abdullah, N. and Kamarudin, S. (2015). Titanium dioxide in fuel cell technology: An overview. Journal of Power Sources, 278: 109 - 118.

2.       Mallakpour, S., Zhiani, M., Barati, A. and Rostami, H. (2013). Improving the direct methanol fuel cell performance withpoly(vinyl alcohol)/titanium dioxide nanocomposites as a novel electrolyte additive. International Journal of Hydrogen Energy, 38(28): 12418 - 12426.

3.       Drew, C., Liu, X., Ziegler, D., Wang, X., Bruno, F. F., Whitten, J. and Kumar, J. (2003). Metal oxide-coated polymer nanofibers. Nano Letters, 3(2): 143 - 147.

4.       Li, D. and Xia, Y. (2003). Fabrication of titania nanofibers by electrospinning. Nano Letters, 3(4): 555 - 560.

5.       Madhugiri, S., Sun, B., Smirniotis, P. G., Ferraris, J. P. and Balkus, K. J. (2004). Electrospun mesoporous titanium dioxide fibers. Microporous and Mesoporous Materials, 69(1): 77 - 83.

6.       Ding, B., Kim, C. K., Kim, H. Y., Seo, M. K. and Park, S. J. (2004). Titanium dioxide nanofibers prepared by using electrospinning method. Fibers and Polymers, 5 (2): 105 - 109.

7.       Watthanaarun, J., Pavarajarn, V. and Supaphol, P. (2005). Titanium(IV) oxide nanofibers by combined sol–gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant. Science and Technology of Advanced Materials, 6(3): 240 - 245.

8.       Suzuki, Y., Pavasupree, S., Yoshikawa, S. and Kawahata, R. (2005). Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing. Journal of Materials Research, 20(04): 1063 - 1070.

9.       Ito, Y., Takeuchi, T., Tsujiguchi, T., Abdelkareem, M. A. and Nakagawa, N. (2013). Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2/-embedded carbon nanofiber support. Journal of Power Sources, 242: 280 - 288.

10.    Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H. (2014). A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 49(2): 463 - 480.

11.    Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process - a review. Journal of Materials Processing Technology, 167(2): 283 - 293.

 




Previous                    Content                    Next