Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 60 - 70

DOI: 10.17576/mjas-2019-2301-08

 

 

 

HYDROGEN SORPTION OF MAGNESIUM OXIDE CARBON NANOFIBRE COMPOSITE

 

(Serapan Hidrogen pada Komposit Magnesium Oksida Nano-gentian Karbon)

 

Nurul Zafirah Abd. Khalim Khafidz1, Zahira Yaakob1,2, Sharifah Najiha Timmiati1, Kuen-Song Lin3, Kean Long Lim1*

 

1Fuel Cell Institute

2Center for Sustainable Process Technology (CESPRO)

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Chemical Engineering and Materials Science,

Yuan Ze University, Chung-Li City 320, Taiwan

 

*Corresponding author:  kllim@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Carbon nanofibres have high specific surface area to adsorb hydrogen on their surface and are widely investigated for hydrogen storage. Although carbon nanofibres can store a considerable amount of hydrogen, the adsorption of the latter must be conducted at cryogenic conditions. Here, MgO is proposed as a catalyst to improve the hydrogen storage performance of carbon nanofibres at room temperature because of the light weight MgO and its ability to dissociate hydrogen molecules. The magnesium oxide–carbon nanofibre (MgO–CNF) composite was prepared with polivinylpyrrolidone polymer and MgO via an electrospinner. The samples were characterised with field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and microgravimetric analysis. The MgO particles were formed on the surface and embedded inside the MgO–CNFs, thereby increasing the specific surface area. The as-synthesised MgO–CNFs with a specific surface area of 547 m2/g can store 2.54 wt.% of hydrogen at room temperature, showing more than 30% improvement as compared with that of CNFs.

 

Keywords:  electrospinning, hydrogen storage, carbon nanofibre, metal oxide

 

Abstrak

Nano-gentian karbon mempunyai kelebihan dengan luas permukaan yang tinggi untuk menjerap hidrogen di atas permukaan nano-gentian karbon, berpotensi sebagai bahan penyimpanan hidrogen. Walaupun nano-gentian karbon mempunyai kebolehan untuk menyimpan hidrogen yang banyak, penjerapan hidrogen perlu dilakukan pada keadaan kriogenik. Di sini, magnesium oksida telah dicadangan sebagai pemangkin untuk meningkatkan prestasi nano-gentian karbon dalam penyimpanan hidrogen pada suhu bilik kerana ia adalah ringan dan berkebolehan untuk memisahkan molekul hidrogen. Komposit magnesium oksida nano-gentian karbon telah disediakan dengan polivinilpirolidon polimer dan magnesium oksida melalui kaedah elektroputaran. Sampel dicirikan dengan mikroskopi elektron pengimbasan pancaran medan, belauan sinar-X, spektroskopi inframerah transformasi Fourier, analisis termogravimetri, kalorimetri pengimbasan pembezaan dan mikrogravimetri. Zarah MgO terbentuk dipermukaan dan berada di dalam MgO–CNF telah meningkatkan spesifik luas permukaan. MgO–CNF dengan luas permukaan tentu 547 m2/g, berkebolehan menyimpan hidrogen sebanyak 2.54 wt.% pada suhu bilik, yang mana peratus peningkatan kapasiti penyimpanan hidrogen melebihi 30% berbanding dengan menggunakan CNF sahaja.

 

Kata kunci:  elektroputaran, penyimpanan hidrogen, nano-gentian karbon, oksida logam

 

References

1.       Raza, A., Wang, J., Yang, S., Si, Y. and Ding, B. (2014). Hierarchical porous carbon nanofibers via electrospinning. Carbon Letters, 15:1–14.

2.       Ströbel, R., Garche, J., Moseley, P. T., Jörissen, L. and Wolf, G. (2006). Hydrogen storage by carbon materials. Journal of Power Sources, 159: 781 – 801.

3.       Zubizarreta, L., Gome, E. I., Arenillas, Z., Ania, C. O., Parra, J. B. and Pis, J.J. (2008). H2 storage in carbon materials. Adsorption, 14: 557 – 566.

4.       Yang, S. J., Cho, J. H., Nahm, K. S. and Park, C. R. (2010). Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. International Journal of Hydrogen Energy, 35: 13062 – 13067.

5.       Jaybhaye, S., Sharon, M., Sharon, M., Sathiyamoorthy, D. and Dasgupta, K. (2006). Semiconducting carbon nanofibers and hydrogen storage. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 37(6): 2007.

6.       Bai, B. C, Kim, G. J., Naik, M. and Lee, Y.-S. (2011). The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Letters, 12: 171 – 176.

7.       Yurum, Y., Taralp, A. and Nejat Veziroglu, T. (2009). Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 34: 3784 – 3798.

8.       Collin, D. J. and Zhou, H.-C. (2007). Hydrogen storage in metal-organic frameworks. Journal of Materials Chemistry, 17: 3154 - 3160.

9.       Vasiliev, L. L., Kanonchik, L. E., Kulakov, A. G., and Babenko, V. A. (2007). Hydrogen storage system based on novel carbon materials and heat pipe heat exchanger. International Journal of Thermal Sciences, 46: 914 – 925.

10.    Sami, A. and Hussein, A. (2015). Growth of carbon nanofibers synthesised from decomposition of liquid organic waste on a Ni/Al2O3 catalyst: Themodynamic and kinetic analyses. Energy Procedia, 74: 32 – 43.

11.    Kvande, I., Chen, D., Yu, Z., Ronning, M. and Holmen, A. (2007). Optimization and scale-up of CNF prodcution based on intrinsic kinetic data obtained from TEOM. Journal of Catalyst, 256: 204 – 214.

12.    Wang, J. and Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22: 23710 – 23725.

13.    Chen, Y., Zhu, H. and Liu, Y. (2011). Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydogen adsorption. International Journal of Hydrogen Energy, 36: 11738 – 11745.

14.    Kim, H., Lee, D. and Moon, J. (2011). Co-electrospun Pd-coated porous carbon nanofibers for hydrogen storage applications. International Journal of Hydrogen Energy, 36: 3566 – 3573.

15.    Im, J. S., Kwon, O., Kim, Y. H., Park, S.-J. and Lee, Y.-S. (2008). The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Materials, 115: 514 – 521.

16.    Froudakis, G.E. (2011). Hydrogen storage in nanotubes & nanostructures. Materials Today, 14: 324 - 328.

17.    Konda, S. K. and Chen, A. (2016). Palladium based nanomaterials for enhanced hydrogen storage spillover and storage. Materials Today, 19: 100 – 108.

18.    Manafi, S. A. and Badiee, S. H. (2008). Production of carbon nanofibers using a CVD method with lithium fluoride as a supported cobalt catalyst. Research Letters in Materials Science, 2008: 1 – 5.

19.    Mitra, S., Sridharan, K., Unnam, J. and Ghosh, K. (2008). Synthesis of nanometal oxide and nanometals using hot-wire and thermal CVD. Thin Solid Films, 516: 798 – 802.

20.    Rafique, M. M. A. and Iqbal, J. (2011). Production of carbon nanotubes by different routes - A review. Journal of Encapsulation and Adsorption, 1: 29 – 34.

21.    Su, Z., Ding, J. and Wei, G. (2014). Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. Royal Society of Chemistry, 4: 52598 – 52610.

22.    Kunowsky, M., Marco-Lózar, J. P., Oya, A. and Linares-Solano, A. (2012). Hydrogen storage in CO2-activated amoprhous nanofibers and their monoliths. Carbon, 50: 1407 – 1416.

23.    Yang, S. J., Jung, H., Kim, T. and Park, C. R. (2012). Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progress in Natural Science: Materials International, 22: 631 – 638.

24.    Kim, B. J., Lee, Y. S. and Park, S. J. (2008). Novel porous carbons synthesized from polymeric precursors for hydrogen storage. International Journal of Hydrogen Energy, 33: 2254 – 2259.

25.    Jiménez, V., Ramírez-Lucas, A., Sanchéz, P., Valverde, J. L. and Romero, A. (2012). Hydrogen storage in different carbon materials: Influence of the porosity development by chemical activation. Applied Surface Science, 258: 2498 – 2509.

26.    Sawai, N. U. and Harun, F. W. (2015). Hydrogen adsoprtion on agricultural-based activated carbons, zeolite templated-carbons and clay-based materials: A review. Journal of Industrial & Engineering Chemistry Research, 1: 1 – 7.

27.    Jia, M. and Zhang, Y. (2009). Study on the synthesis of carbon fibers and CNF using potassium iodide catalyst. Materials Letters, 63: 2111 – 2114.

28.    Sundaramurthy, J., Li, N., Kumar, P. S. and Ramakrishna, S. (2014). Perspective of electrospun nanofibers in energy and environment. Biofuel Research Journal, 2: 44 – 54.

29.    Lim, K. L., Kazemian, H., Yaakob, Z. and Daud, W. R. W. (2010). Solid-state materials and methods for hydrogen storage: A critical review. Chemical Engineering & Technology, 33: 213 – 226.

30.    Yaakob, Z., Khaadem, D. J., Shahgaldi, S., Daud, W. R. W. and Tasirin, S. M. (2012). The role of Al and Mg in the hydrogen storage of electrospun ZnO nanofibers. International Journal of Hydrogen Energy, 37: 8388 – 8394.

31.    Im, J. S., Park, S. J., Kim, T. and Lee, Y. S. (2009). Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. International Journal of Hydrogen Energy, 34: 3382 – 3388.

32.    Lachawiec, A. J., Qi, J. G. and Yang, R. T. (2005). Hydrogen storage in nanostructured carbons by spillover: Bridge-building enhancement. Langmuir, 21: 11418 – 11424.

33.    Campbell, F. C. (2012). Introduction and uses of lightweight materials. Lightweight materials - understanding the basics. ASM International, 1-31.

34.    Ito, T., Sekino, T., Moriai, N. and Tokuda, T. (1981). Hydrogen adsorption on magnesium oxide powders. Journal of the Chemical Society, Faraday Transactions, 1(77): 2181 – 2192.

35.    Wu, G., Zhang, J., Wu, Y., Li, Q., Chou, K. and Bao, X. (2009). Adsorption and dissociation of hydrogen on MgO surface: A first-principles study. Journal of Alloys and Compounds, 480: 788 – 793.

36.    Ferrari, B., Moreno, R., Sarkar, P. and Nicholson, P. S. (200). Electrophoretic deposition of MgO from organic suspensions. Journal of European Ceramic Society, 20: 99 – 106.

37.    Wang, C., Ma, C., Wu, Z., Liang, H., Yan, P., Song, J., Ma, N. and Zhao, Q. (2015). Enhanced bioavailability and anticancer effect of curcumin-loaded electrospun nanofiber: In vitro and in vivo study. Nanoscale Research Letters, 10: 439.

38.    Sivaiah, K., Kumar, K. N., Naresh, V. and Buddhudu, S. (2011). Structural and optical properties of Li+:PVP & Ag+:PVP polymer films. Materials Sciences and Applications, 2: 1688 – 1696.

39.    Tamilselvi, P., Yelilarasi, A., Hema, M. and Anbarasan, R. (2013). Synthesis of hierarchical structured MgO .by sol-gel method. Nano Bulletin, 2: 1301061 – 1301065.

40.    Aykut, Y. (2013). Electrospun MgO-loaded carbon nanofibers: Enhanced field electron emission from the fibers in vacuum. Journal of Physics and Chemistry Solids, 74: 328 – 337.

41.    Dhaouadi, H., Chaabane, H. and Touati, F. (2011). Mg(OH)2 nanorods synthesized by a facile hydrothermal method in the presence of CTAB. Nano-Micro Letters, 3: 153 – 159.

42.    Salamão, R. and Pandolfelli, V. C. (2008). Magnesia sinter hydration-dehydration behavior in refractory castables. Ceramic International, 34: 1829 – 1834.

43.    Baytak, A. K., Duzmen, S., Teker, T. and Aslanoglu, M. (2017). Voltammetric determination of methylparaben and its DNA interaction using a novel platform based on carbon nanofibers and cobalt-nickel-palladium nanoparticles. Sensors Actuators B, 239: 330 – 337.

44.    Rafizah, W. A. W. and Ismail, A. F. (2008). Effect of carbon molecular sieve sizing with poly(vinylpyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane. Journal of Membrane Science, 307: 53 – 61.

45.    Dong, G., Xiao, X., Liu, X., Qian B., Ma, Z., Ye, S., Chen, D. and Qiu, J. (2010). Preparation and characterization of Ag nanoparticle embedded polymer electrospun nanofibers. Journal of Nanoparticle Research, 12: 1319 – 1329.

46.    Saravanan, L., Diwakar, S., Mohankumar, R., Pandurangan, A. and Jayavel, R. (2011). Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomaterials and Nanotechnology, 1: 42 – 48.

47.    Zhou, C., Liu, Z., Du, X., Mitchell, D. R. G., Mai, Y.-W., Yan, Y. and Ringer, S. (2012). Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Reserach Letters, 7(165): 1 - 11.

48.    Guadagno, L., Raimondo, M., Vittoria, V., Vertuccio, L., Lafdi, K., Vivo, B. D., Lamberti, P., Spinelli, G. and Tucci, V. (2013). The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology, 24: 1 – 10.

49.    Shao, C., Guan, H. and Liu, Y. (2006). MgO nanofibers via electrospinning technique. Journal of Materials Science, 41: 3821 – 3824.

50.    Rezaei, M., Khajenoori, M. and Nematollahi, B. (2011). Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technology, 205: 112 – 116.

51.    Sutcu, M., Akkrut, S. and Oku, S. (2010). Microstructural study of surface hydration on magnesia refractory. Ceramics International, 36: 1731 – 1735.

52.    Kim, J.-H., Yoo, S.-J., Kwak, D.-H., Jung, H.-J., Kim, T.-Y., Park, K.-H., and Lee, J.-W. (2014). Characterization and application of electrospun alumina nanofibers. Nanoscale Research Letters, 9: 1 – 6.

53.    Salles, T. H. C., Lombello, C. B and D’Ávila, M. A. (2015). Electrospinning of gelatin/poly(vinylpyrrolidone) blends from water/acetic acid solutions. Materials Research, 18: 509 – 518.

54.    Behij, S., Hammi, H., Hamzaoui, A. H. and M’nif, A. (2013). Magnesium salts as compounds of the preparation of magnesium oxide from tunisian natural brines. Chemical Industry and Chemical Engineering Quarterly, 19: 263 – 271.

55.    Mastuli, M. S., Ansari, N. S., Nawawi, M. A. and Mahat, A. M. (2012). Effects of cationic surfactant in sol-gel synthesis of nano sized magnesium oxide. APCBEE Procedia, 3: 93 – 98.

56.    Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702 – 1706.

 




Previous                    Content                    Next