Malaysian Journal of Analytical Sciences Vol 23 No 1
(2019): 60 - 70
DOI:
10.17576/mjas-2019-2301-08
HYDROGEN SORPTION OF
MAGNESIUM OXIDE CARBON NANOFIBRE COMPOSITE
(Serapan Hidrogen
pada Komposit Magnesium Oksida Nano-gentian Karbon)
Nurul Zafirah Abd. Khalim Khafidz1,
Zahira Yaakob1,2, Sharifah Najiha Timmiati1, Kuen-Song
Lin3, Kean Long Lim1*
1Fuel Cell Institute
2Center for Sustainable Process Technology (CESPRO)
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department of Chemical Engineering and Materials Science,
Yuan Ze University, Chung-Li City 320, Taiwan
*Corresponding
author: kllim@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Carbon
nanofibres have high specific surface area to adsorb hydrogen on their surface
and are widely investigated for hydrogen storage. Although carbon nanofibres
can store a considerable amount of hydrogen, the adsorption of the latter must
be conducted at cryogenic conditions. Here, MgO is proposed as a catalyst to
improve the hydrogen storage performance of carbon nanofibres at room
temperature because of the light weight MgO and its ability to dissociate
hydrogen molecules. The magnesium oxide–carbon nanofibre (MgO–CNF) composite
was prepared with polivinylpyrrolidone polymer and MgO via an electrospinner.
The samples were characterised with field emission scanning electron
microscopy, X-ray diffraction, Fourier transform infrared spectroscopy,
thermogravimetric analysis, differential scanning calorimetry and
microgravimetric analysis. The MgO particles were formed on the surface and
embedded inside the MgO–CNFs, thereby increasing the specific surface area. The
as-synthesised MgO–CNFs with a specific surface area of 547 m2/g
can store 2.54 wt.% of hydrogen at room temperature, showing more than 30%
improvement as compared with that of CNFs.
Keywords: electrospinning, hydrogen storage, carbon
nanofibre, metal oxide
Abstrak
Nano-gentian karbon mempunyai
kelebihan dengan luas permukaan yang tinggi untuk menjerap hidrogen di atas
permukaan nano-gentian karbon, berpotensi sebagai bahan penyimpanan hidrogen.
Walaupun nano-gentian karbon mempunyai kebolehan untuk menyimpan hidrogen yang
banyak, penjerapan hidrogen perlu dilakukan pada keadaan kriogenik. Di sini,
magnesium oksida telah dicadangan sebagai pemangkin untuk meningkatkan prestasi
nano-gentian karbon dalam penyimpanan hidrogen pada suhu bilik kerana ia adalah
ringan dan berkebolehan untuk memisahkan molekul hidrogen. Komposit magnesium oksida
nano-gentian karbon telah disediakan dengan polivinilpirolidon polimer dan
magnesium oksida melalui kaedah elektroputaran. Sampel dicirikan dengan
mikroskopi elektron pengimbasan pancaran medan, belauan sinar-X, spektroskopi
inframerah transformasi Fourier, analisis termogravimetri, kalorimetri
pengimbasan pembezaan dan mikrogravimetri. Zarah MgO terbentuk dipermukaan dan
berada di dalam MgO–CNF telah meningkatkan spesifik luas permukaan. MgO–CNF
dengan luas permukaan tentu 547 m2/g, berkebolehan menyimpan
hidrogen sebanyak 2.54 wt.% pada suhu bilik, yang mana peratus peningkatan
kapasiti penyimpanan hidrogen melebihi 30% berbanding dengan menggunakan CNF
sahaja.
Kata kunci: elektroputaran, penyimpanan hidrogen, nano-gentian
karbon, oksida logam
References
1. Raza, A., Wang,
J., Yang, S., Si, Y. and Ding, B. (2014). Hierarchical porous carbon nanofibers
via electrospinning. Carbon Letters,
15:1–14.
2. Ströbel, R.,
Garche, J., Moseley, P. T., Jörissen, L. and Wolf, G. (2006). Hydrogen storage
by carbon materials. Journal of Power
Sources, 159: 781 – 801.
3. Zubizarreta, L.,
Gome, E. I., Arenillas, Z., Ania, C. O., Parra, J. B. and Pis, J.J. (2008). H2
storage in carbon materials. Adsorption,
14: 557 – 566.
4. Yang, S. J.,
Cho, J. H., Nahm, K. S. and Park, C. R. (2010). Enhanced hydrogen storage
capacity of Pt-loaded CNT@MOF-5 hybrid composites. International Journal of Hydrogen Energy, 35: 13062 – 13067.
5. Jaybhaye, S.,
Sharon, M., Sharon, M., Sathiyamoorthy, D. and Dasgupta, K. (2006).
Semiconducting carbon nanofibers and hydrogen storage. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal
Chemistry, 37(6): 2007.
6. Bai, B. C, Kim,
G. J., Naik, M. and Lee, Y.-S. (2011). The hydrogen storage capacity of
metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Letters, 12: 171 – 176.
7. Yurum, Y.,
Taralp, A. and Nejat Veziroglu, T. (2009). Storage of hydrogen in
nanostructured carbon materials. International
Journal of Hydrogen Energy, 34: 3784 – 3798.
8. Collin, D. J.
and Zhou, H.-C. (2007). Hydrogen storage in metal-organic frameworks. Journal of Materials Chemistry, 17: 3154
- 3160.
9. Vasiliev, L. L.,
Kanonchik, L. E., Kulakov, A. G., and Babenko, V. A. (2007). Hydrogen storage
system based on novel carbon materials and heat pipe heat exchanger. International Journal of Thermal Sciences,
46: 914 – 925.
10. Sami, A. and
Hussein, A. (2015). Growth of carbon nanofibers synthesised from decomposition
of liquid organic waste on a Ni/Al2O3 catalyst:
Themodynamic and kinetic analyses. Energy
Procedia, 74: 32 – 43.
11. Kvande, I.,
Chen, D., Yu, Z., Ronning, M. and Holmen, A. (2007). Optimization and scale-up
of CNF prodcution based on intrinsic kinetic data obtained from TEOM. Journal of Catalyst, 256: 204 – 214.
12. Wang, J. and
Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage.
Journal of Materials Chemistry, 22:
23710 – 23725.
13. Chen, Y., Zhu,
H. and Liu, Y. (2011). Preparation of activated rectangular polyaniline-based
carbon tubes and their application in hydogen adsorption. International Journal of Hydrogen Energy, 36:
11738 – 11745.
14. Kim, H., Lee, D.
and Moon, J. (2011). Co-electrospun Pd-coated porous carbon nanofibers for
hydrogen storage applications. International
Journal of Hydrogen Energy, 36: 3566 – 3573.
15. Im, J. S., Kwon,
O., Kim, Y. H., Park, S.-J. and Lee, Y.-S. (2008). The effect of embedded
vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Materials, 115:
514 – 521.
16. Froudakis, G.E.
(2011). Hydrogen storage in nanotubes & nanostructures. Materials Today, 14: 324 - 328.
17. Konda, S. K. and
Chen, A. (2016). Palladium based nanomaterials for enhanced hydrogen storage
spillover and storage. Materials Today,
19: 100 – 108.
18. Manafi, S. A.
and Badiee, S. H. (2008). Production of carbon nanofibers using a CVD method
with lithium fluoride as a supported cobalt catalyst. Research Letters in Materials Science, 2008: 1 – 5.
19. Mitra, S.,
Sridharan, K., Unnam, J. and Ghosh, K. (2008). Synthesis of nanometal oxide and
nanometals using hot-wire and thermal CVD. Thin
Solid Films, 516: 798 – 802.
20. Rafique, M. M.
A. and Iqbal, J. (2011). Production of carbon nanotubes by different routes - A
review. Journal of Encapsulation and
Adsorption, 1: 29 – 34.
21. Su, Z., Ding, J.
and Wei, G. (2014). Electrospinning: A facile technique for fabricating
polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for
sensor applications. Royal Society of
Chemistry, 4: 52598 – 52610.
22. Kunowsky, M.,
Marco-Lózar, J. P., Oya, A. and Linares-Solano, A. (2012). Hydrogen storage in
CO2-activated amoprhous nanofibers and their monoliths. Carbon, 50: 1407 – 1416.
23. Yang, S. J.,
Jung, H., Kim, T. and Park, C. R. (2012). Recent advances in hydrogen storage
technologies based on nanoporous carbon materials. Progress in Natural Science: Materials International,
22: 631 – 638.
24. Kim, B. J., Lee,
Y. S. and Park, S. J. (2008). Novel porous carbons synthesized from polymeric
precursors for hydrogen storage. International
Journal of Hydrogen Energy, 33: 2254 – 2259.
25. Jiménez, V.,
Ramírez-Lucas, A., Sanchéz, P., Valverde, J. L. and Romero, A. (2012). Hydrogen
storage in different carbon materials: Influence of the porosity development by
chemical activation. Applied Surface
Science, 258: 2498 – 2509.
26. Sawai, N. U. and
Harun, F. W. (2015). Hydrogen adsoprtion on agricultural-based activated
carbons, zeolite templated-carbons and clay-based materials: A review. Journal of Industrial & Engineering Chemistry
Research, 1: 1 – 7.
27. Jia, M. and
Zhang, Y. (2009). Study on the synthesis of carbon fibers and CNF using
potassium iodide catalyst. Materials
Letters, 63: 2111 – 2114.
28. Sundaramurthy,
J., Li, N., Kumar, P. S. and Ramakrishna, S. (2014). Perspective of electrospun
nanofibers in energy and environment. Biofuel
Research Journal, 2: 44 – 54.
29. Lim, K. L.,
Kazemian, H., Yaakob, Z. and Daud, W. R. W. (2010). Solid-state materials and
methods for hydrogen storage: A critical review. Chemical Engineering & Technology, 33: 213 – 226.
30. Yaakob, Z.,
Khaadem, D. J., Shahgaldi, S., Daud, W. R. W. and Tasirin, S. M. (2012). The
role of Al and Mg in the hydrogen storage of electrospun ZnO nanofibers. International Journal of Hydrogen Energy,
37: 8388 – 8394.
31. Im, J. S., Park,
S. J., Kim, T. and Lee, Y. S. (2009). Hydrogen storage evaluation based on
investigations of the catalytic properties of metal/metal oxides in electrospun
carbon fibers. International Journal of
Hydrogen Energy, 34: 3382 – 3388.
32. Lachawiec, A.
J., Qi, J. G. and Yang, R. T. (2005). Hydrogen storage in nanostructured
carbons by spillover: Bridge-building enhancement. Langmuir, 21: 11418 – 11424.
33. Campbell, F. C.
(2012). Introduction and uses of lightweight materials. Lightweight materials -
understanding the basics. ASM
International, 1-31.
34. Ito, T., Sekino,
T., Moriai, N. and Tokuda, T. (1981). Hydrogen adsorption on magnesium oxide
powders. Journal of the Chemical Society,
Faraday Transactions, 1(77): 2181 – 2192.
35. Wu, G., Zhang,
J., Wu, Y., Li, Q., Chou, K. and Bao, X. (2009). Adsorption and dissociation of
hydrogen on MgO surface: A first-principles study. Journal of Alloys and Compounds, 480: 788 – 793.
36. Ferrari, B.,
Moreno, R., Sarkar, P. and Nicholson, P. S. (200). Electrophoretic deposition
of MgO from organic suspensions. Journal
of European Ceramic Society, 20: 99 – 106.
37. Wang, C., Ma,
C., Wu, Z., Liang, H., Yan, P., Song, J., Ma, N. and Zhao, Q. (2015). Enhanced
bioavailability and anticancer effect of curcumin-loaded electrospun nanofiber:
In vitro and in vivo study. Nanoscale
Research Letters, 10: 439.
38. Sivaiah, K.,
Kumar, K. N., Naresh, V. and Buddhudu, S. (2011). Structural and optical properties
of Li+:PVP & Ag+:PVP polymer films. Materials Sciences and Applications, 2:
1688 – 1696.
39. Tamilselvi, P.,
Yelilarasi, A., Hema, M. and Anbarasan, R. (2013). Synthesis of hierarchical
structured MgO .by sol-gel method. Nano
Bulletin, 2: 1301061 – 1301065.
40. Aykut, Y.
(2013). Electrospun MgO-loaded carbon nanofibers: Enhanced field electron
emission from the fibers in vacuum. Journal
of Physics and Chemistry Solids, 74: 328 – 337.
41. Dhaouadi, H.,
Chaabane, H. and Touati, F. (2011). Mg(OH)2 nanorods synthesized by
a facile hydrothermal method in the presence of CTAB. Nano-Micro Letters, 3: 153 – 159.
42. Salamão, R. and
Pandolfelli, V. C. (2008). Magnesia sinter hydration-dehydration behavior in
refractory castables. Ceramic
International, 34: 1829 – 1834.
43. Baytak, A. K.,
Duzmen, S., Teker, T. and Aslanoglu, M. (2017). Voltammetric determination of
methylparaben and its DNA interaction using a novel platform based on carbon
nanofibers and cobalt-nickel-palladium nanoparticles. Sensors Actuators B, 239: 330 – 337.
44. Rafizah, W. A.
W. and Ismail, A. F. (2008). Effect of carbon molecular sieve sizing with
poly(vinylpyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix
membrane. Journal of Membrane Science,
307: 53 – 61.
45. Dong, G., Xiao,
X., Liu, X., Qian B., Ma, Z., Ye, S., Chen, D. and Qiu, J. (2010). Preparation
and characterization of Ag nanoparticle embedded polymer electrospun
nanofibers. Journal of Nanoparticle
Research, 12: 1319 – 1329.
46. Saravanan, L.,
Diwakar, S., Mohankumar, R., Pandurangan, A. and Jayavel, R. (2011). Synthesis,
structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomaterials and Nanotechnology,
1: 42 – 48.
47. Zhou, C., Liu,
Z., Du, X., Mitchell, D. R. G., Mai, Y.-W., Yan, Y. and Ringer, S. (2012).
Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support
to platinum nanocatalysts and their TEM tomography study. Nanoscale Reserach Letters, 7(165): 1 - 11.
48. Guadagno, L.,
Raimondo, M., Vittoria, V., Vertuccio, L., Lafdi, K., Vivo, B. D., Lamberti,
P., Spinelli, G. and Tucci, V. (2013). The role of carbon nanofiber defects on
the electrical and mechanical properties of CNF-based resins. Nanotechnology, 24: 1 – 10.
49. Shao, C., Guan,
H. and Liu, Y. (2006). MgO nanofibers via electrospinning technique. Journal of Materials Science, 41:
3821 – 3824.
50. Rezaei, M.,
Khajenoori, M. and Nematollahi, B. (2011). Synthesis of high surface area
nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technology, 205: 112 – 116.
51. Sutcu, M.,
Akkrut, S. and Oku, S. (2010). Microstructural study of surface hydration on
magnesia refractory. Ceramics
International, 36: 1731 – 1735.
52. Kim, J.-H., Yoo,
S.-J., Kwak, D.-H., Jung, H.-J., Kim, T.-Y., Park, K.-H., and Lee, J.-W. (2014).
Characterization and application of electrospun alumina nanofibers. Nanoscale Research Letters, 9: 1 – 6.
53. Salles, T. H.
C., Lombello, C. B and D’Ávila, M. A. (2015). Electrospinning of
gelatin/poly(vinylpyrrolidone) blends from water/acetic acid solutions. Materials Research, 18: 509 – 518.
54. Behij, S.,
Hammi, H., Hamzaoui, A. H. and M’nif, A. (2013). Magnesium salts as compounds
of the preparation of magnesium oxide from tunisian natural brines. Chemical Industry and Chemical Engineering
Quarterly, 19: 263 – 271.
55. Mastuli, M. S.,
Ansari, N. S., Nawawi, M. A. and Mahat, A. M. (2012). Effects of cationic
surfactant in sol-gel synthesis of nano sized magnesium oxide. APCBEE Procedia, 3: 93 – 98.
56. Kissinger, H. E.
(1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29:
1702 – 1706.